
Package ‘spatialLIBD’
February 10, 2026

Title spatialLIBD: an R/Bioconductor package to visualize
spatially-resolved transcriptomics data

Version 1.22.0

Date 2025-09-16

Description Inspect interactively the spatially-resolved transcriptomics data
from the 10x Genomics Visium platform as well as data from the
Maynard, Collado-Torres et al, Nature Neuroscience, 2021 project analyzed by
Lieber Institute for Brain Development (LIBD) researchers and collaborators.

License Artistic-2.0

Encoding UTF-8

LazyData true

Imports shiny, golem, ggplot2, cowplot, plotly, viridisLite,
shinyWidgets, sessioninfo, grid, grDevices, methods,
AnnotationHub, utils, png, scater, DT, ExperimentHub,
SummarizedExperiment, stats, graphics, S4Vectors, IRanges,
benchmarkme, SingleCellExperiment, BiocFileCache, jsonlite,
tibble, rtracklayer, Matrix, BiocGenerics, GenomicRanges,
magick, paletteer, scuttle, edgeR, limma, statmod,
MatrixGenerics, rlang, dplyr, ComplexHeatmap, circlize

RoxygenNote 7.3.3

Roxygen list(markdown = TRUE)

URL https://github.com/LieberInstitute/spatialLIBD

BugReports https://support.bioconductor.org/tag/spatialLIBD

Suggests knitr, RefManageR, rmarkdown, BiocStyle, testthat (>= 2.1.0),
covr, here, BiocManager, lobstr, DropletUtils, RColorBrewer

VignetteBuilder knitr

biocViews Homo_sapiens_Data, ExperimentHub, SequencingData,
SingleCellData, ExpressionData, Tissue, PackageTypeData,
SpatialData

Depends SpatialExperiment (>= 1.3.3), R (>= 4.1)

git_url https://git.bioconductor.org/packages/spatialLIBD

git_branch RELEASE_3_22

git_last_commit d06d43c

git_last_commit_date 2025-10-29

1

https://github.com/LieberInstitute/spatialLIBD
https://support.bioconductor.org/tag/spatialLIBD

2 Contents

Repository Bioconductor 3.22

Date/Publication 2026-02-10

Author Leonardo Collado-Torres [aut, cre] (ORCID:
<https://orcid.org/0000-0003-2140-308X>),

Kristen R. Maynard [ctb] (ORCID:
<https://orcid.org/0000-0003-0031-8468>),

Andrew E. Jaffe [ctb] (ORCID: <https://orcid.org/0000-0001-6886-1454>),
Brenda Pardo [ctb] (ORCID: <https://orcid.org/0000-0001-8103-7136>),
Abby Spangler [ctb] (ORCID: <https://orcid.org/0000-0002-0028-9348>),
Jesús Vélez Santiago [ctb] (ORCID:

<https://orcid.org/0000-0001-5128-3838>),
Lukas M. Weber [ctb] (ORCID: <https://orcid.org/0000-0002-3282-1730>),
Louise Huuki-Myers [ctb] (ORCID:

<https://orcid.org/0000-0001-5148-3602>),
Nicholas Eagles [ctb] (ORCID: <https://orcid.org/0000-0002-9808-5254>)

Maintainer Leonardo Collado-Torres <lcolladotor@gmail.com>

Contents
spatialLIBD-package . 3
add10xVisiumAnalysis . 4
add_images . 5
add_key . 6
add_qc_metrics . 7
annotate_registered_clusters . 9
check_modeling_results . 10
check_sce . 11
check_sce_layer . 12
check_spe . 13
cluster_export . 14
cluster_import . 15
enough_ram . 16
fetch_data . 16
frame_limits . 18
gene_set_enrichment . 19
gene_set_enrichment_plot . 21
geom_spatial . 25
get_colors . 26
img_edit . 27
img_update . 29
img_update_all . 30
layer_boxplot . 31
layer_stat_cor . 33
layer_stat_cor_plot . 35
libd_layer_colors . 38
locate_images . 38
multi_gene_pca . 39
multi_gene_sparsity . 39
multi_gene_z_score . 40
prep_stitched_data . 40
read10xVisiumAnalysis . 41

https://orcid.org/0000-0003-2140-308X
https://orcid.org/0000-0003-0031-8468
https://orcid.org/0000-0001-6886-1454
https://orcid.org/0000-0001-8103-7136
https://orcid.org/0000-0002-0028-9348
https://orcid.org/0000-0001-5128-3838
https://orcid.org/0000-0002-3282-1730
https://orcid.org/0000-0001-5148-3602
https://orcid.org/0000-0002-9808-5254

spatialLIBD-package 3

read10xVisiumWrapper . 42
registration_block_cor . 43
registration_model . 44
registration_pseudobulk . 45
registration_stats_anova . 46
registration_stats_enrichment . 48
registration_stats_pairwise . 49
registration_wrapper . 50
run_app . 52
sce_to_spe . 57
sig_genes_extract . 58
sig_genes_extract_all . 59
sort_clusters . 61
tstats_Human_DLPFC_snRNAseq_Nguyen_topLayer 62
vis_clus . 63
vis_clus_p . 65
vis_gene . 67
vis_gene_p . 71
vis_grid_clus . 73
vis_grid_gene . 75
vis_image . 78

Index 80

spatialLIBD-package spatialLIBD: spatialLIBD: an R/Bioconductor package to visualize
spatially-resolved transcriptomics data

Description

Inspect interactively the spatially-resolved transcriptomics data from the 10x Genomics Visium
platform as well as data from the Maynard, Collado-Torres et al, Nature Neuroscience, 2021 project
analyzed by Lieber Institute for Brain Development (LIBD) researchers and collaborators.

Author(s)

Maintainer: Leonardo Collado-Torres <lcolladotor@gmail.com> (ORCID)

Other contributors:

• Kristen R. Maynard <Kristen.Maynard@libd.org> (ORCID) [contributor]

• Andrew E. Jaffe <andrew.jaffe@libd.org> (ORCID) [contributor]

• Brenda Pardo <bpardo@lcgej.unam.mx> (ORCID) [contributor]

• Abby Spangler <aspangle@gmail.com> (ORCID) [contributor]

• Jesús Vélez Santiago <jvelezmagic@gmail.com> (ORCID) [contributor]

• Lukas M. Weber <lukas.weber.edu@gmail.com> (ORCID) [contributor]

• Louise Huuki-Myers <lahuuki@gmail.com> (ORCID) [contributor]

• Nicholas Eagles <nickeagles77@gmail.com> (ORCID) [contributor]

https://orcid.org/0000-0003-2140-308X
https://orcid.org/0000-0003-0031-8468
https://orcid.org/0000-0001-6886-1454
https://orcid.org/0000-0001-8103-7136
https://orcid.org/0000-0002-0028-9348
https://orcid.org/0000-0001-5128-3838
https://orcid.org/0000-0002-3282-1730
https://orcid.org/0000-0001-5148-3602
https://orcid.org/0000-0002-9808-5254

4 add10xVisiumAnalysis

See Also

Useful links:

• https://github.com/LieberInstitute/spatialLIBD

• Report bugs at https://support.bioconductor.org/tag/spatialLIBD

add10xVisiumAnalysis Add analysis data from a 10x Genomics Visium experiment to a SPE
object

Description

This function adds to a SPE (SpatialExperiment-class) object the output from read10xVisiumAnalysis().

Usage

add10xVisiumAnalysis(spe, visium_analysis)

Arguments

spe A SpatialExperiment-class object.
visium_analysis

The output from read10xVisiumAnalysis().

Details

You might want to use read10xVisiumWrapper() instead of using this function directly.

Value

A SpatialExperiment-class object with the clustering results from SpaceRanger added to colData(spe)
and the dimension reduction results added to reducedDims(spe). Added data starts with the 10x_
prefix to make them easy to differentiate.

See Also

Other Utility functions for reading data from SpaceRanger output by 10x Genomics: read10xVisiumAnalysis(),
read10xVisiumWrapper()

Examples

See 'Using spatialLIBD with 10x Genomics public datasets' for
a full example using this function.
if (interactive()) {

browseVignettes(package = "spatialLIBD")
}

Note that ?SpatialExperiment::read10xVisium doesn't include all the files
we need to illustrate read10xVisiumWrapper().

https://github.com/LieberInstitute/spatialLIBD
https://support.bioconductor.org/tag/spatialLIBD

add_images 5

add_images Add non-standard images with the same dimensions as current ones

Description

This function re-uses the SpatialExperiment::scaleFactors() from current images when adding
new images. This is useful if you take for example a multi-channel VisiumIF image and break into
several single-channel images that all have the same dimensions. So you could have a set of images
such as channel_01_lowres and channel_02_lowres that have the same dimensions and viewing
area as the lowres image produced by SpaceRanger, each with only one channel. Similarly, you
might have done some image manipulation for a given image and generated one or more images
with the same dimensions as existing images.

Usage

add_images(
spe,
image_dir,
image_pattern,
image_id_current = "lowres",
image_id = image_pattern,
image_paths = locate_images(spe, image_dir, image_pattern)

)

Arguments

spe A SpatialExperiment-class object. See fetch_data() for how to download
some example objects or read10xVisiumWrapper() to read in spaceranger
--count output files and build your own spe object.

image_dir A character(1) specifying a path to a directory containing image files with the
pattern sampleID_pattern.png.

image_pattern A character(1) specifying the pattern for the image files.
image_id_current

A character(1) specifying the name of the current existing image in spe that
has the same scaling factor that to be used with the additional images.

image_id A character(1) specifying the name to use in the new images. It cannot be
the same as one used for existing images in spe for a given sample. It equals
image_pattern by default.

image_paths A named character() vector with the paths to the images. The names have to
match the spe$sample_id and cannot be repeated. By default locate_images()
is used but you can alternatively specify image_paths and ignore image_dir
and image_pattern.

Value

A SpatialExperiment-class object with the additional image data in imgData(spe).

See Also

Other Functions for adding non-standard images: locate_images()

6 add_key

Examples

if (enough_ram()) {
Obtain the necessary data
if (!exists("spe")) spe <- fetch_data("spe")

Add an image
SpatialExperiment::imgData(add_images(

spe,
image_id_current = "lowres",
image_id = "lowres_aws",

image_paths = c("151507" = "https://spatial-dlpfc.s3.us-east-2.amazonaws.com/images/151507_tissue_lowres_image.png")
))

}

add_key Create a unique spot identifier

Description

This function adds spe$key to a SpatialExperiment-class object which is unique across all spots.

Usage

add_key(spe, overwrite = TRUE)

Arguments

spe A SpatialExperiment-class object.

overwrite A logical(1) indicating whether to overwrite the spe$key.

Value

A SpatialExperiment-class object with key added to the colData(spe) that is unique across all
spots.

Examples

if (enough_ram()) {
Obtain the necessary data
if (!exists("spe")) spe <- fetch_data("spe")

This object already has a 'key'
head(spe$key)

We can clean it
spe$key_original <- spe$key
spe$key <- NULL

and then add it back
spe <- add_key(spe)
head(spe$key)

Note that the original 'key' order was 'sample_id'_'barcode' and we'

add_qc_metrics 7

have since changed it to 'barcode'_'sample_id'.

Below we restore the original 'key'
spe$key <- spe$key_original
spe$key_original <- NULL
head(spe$key)

}

add_qc_metrics Quality Control for Spatial Data

Description

This function identify spots in a SpatialExperiment-class (SPE) with outlier quality control values:
low sum_umi or sum_gene, or high expr_chrM_ratio, utilizing scuttle::isOutlier. Also identifies
in-tissue edge spots and distance to the edge for each spot.

Usage

add_qc_metrics(spe, overwrite = FALSE)

Arguments

spe a SpatialExperiment object that has sum_umi, sum_gene, expr_chrM_ratio,
and in_tissue variables in the colData(spe). Note that these are automati-
cally created when you build your spe object with spatialLIBD::read10xVisiumWrapper().

overwrite a logical(1) specifying whether to overwrite the 7 colData(spe) columns
that this function creates. If set to FALSE and any of them are present, the func-
tion will return an error.

Details

The initial version of this function lives at https://github.com/LieberInstitute/Visium_SPG_
AD/blob/master/code/07_spot_qc/01_qc_metrics_and_segmentation.R.

Value

A SpatialExperiment with added quality control information added to the colData().

scran_low_lib_size shows spots that have a low library size.

scran_low_n_features spots with a low number of expressed genes.

scran_high_Mito_percent spots with a high percent of mitochondrial gene expression.

scran_discard spots belonging to either scran_low_lib_size, scran_low_n_feature, or scran_high_Mito_percent.

edge_spot spots that are automatically detected as the edge spots of the in_tissue section.

edge_distance closest distance in number of spots to either the vertical or horizontal edge.

scran_low_lib_size_edge spots that have a low library size and are an edge spot.

Author(s)

Louise A. Huuki-Myers

https://github.com/LieberInstitute/Visium_SPG_AD/blob/master/code/07_spot_qc/01_qc_metrics_and_segmentation.R
https://github.com/LieberInstitute/Visium_SPG_AD/blob/master/code/07_spot_qc/01_qc_metrics_and_segmentation.R

8 add_qc_metrics

Examples

Obtain the necessary data
spe_pre_qc <- fetch_data("spatialDLPFC_Visium_example_subset")

For now, we fake out tissue spots in example data
spe_qc <- spe_pre_qc
spe_qc$in_tissue[spe_qc$array_col < 10] <- FALSE

adds QC metrics to colData of the spe
spe_qc <- add_qc_metrics(spe_qc, overwrite = TRUE)
vars <- colnames(colData(spe_qc))
vars[grep("^(scran|edge)", vars)]

visualize edge spots
vis_clus(spe_qc, sampleid = "Br6432_ant", clustervar = "edge_spot")

specify your own colors
vis_clus(

spe_qc,
sampleid = "Br6432_ant",
clustervar = "edge_spot",
colors = c(

"TRUE" = "lightgreen",
"FALSE" = "pink",
"NA" = "red"

)
)
vis_gene(spe_qc, sampleid = "Br6432_ant", geneid = "edge_distance", minCount = -1)

Visualize scran QC flags

Check the spots with low library size as detected by scran::isOutlier()
vis_clus(spe_qc, sample_id = "Br6432_ant", clustervar = "scran_low_lib_size")

Violin plot of library size with low library size highlighted in a
different color.
scater::plotColData(spe_qc[, spe_qc$in_tissue], x = "sample_id", y = "sum_umi", colour_by = "scran_low_lib_size")

Check any spots that scran::isOutlier() flagged
vis_clus(spe_qc, sampleid = "Br6432_ant", clustervar = "scran_discard")

Low library spots that are on the edge of the tissue
vis_clus(spe_qc, sampleid = "Br6432_ant", clustervar = "scran_low_lib_size_edge")

Use `low_library_size` (or other variables) and `edge_distance` as you
please.
spe_qc$our_low_lib_edge <- spe_qc$scran_low_lib_size & spe_qc$edge_distance < 5

vis_clus(spe_qc, sample_id = "Br6432_ant", clustervar = "our_low_lib_edge")

Clean up
rm(spe_qc, spe_pre_qc, vars)

annotate_registered_clusters 9

annotate_registered_clusters

Annotated spatially-registered clusters

Description

Once you have computed the enrichment t-statistics for your sc/snRNA-seq data using registration_wrapper()
and related functions, you can then use layer_stat_cor() and layer_stat_cor_plot() to per-
form the spatial registartion of your sc/snRNA-seq data. This function helps interpret that matrix
and assign layer labels to your clusters.

Usage

annotate_registered_clusters(
cor_stats_layer,
confidence_threshold = 0.25,
cutoff_merge_ratio = 0.25

)

Arguments

cor_stats_layer

The output of layer_stat_cor().
confidence_threshold

A numeric(1) specifying the minimum correlation that a given cluster must
have against any of the layers (by default) to be considered as having a ’good’
assignment. Otherwise, the confidence will be ’poor’ and the final label will
have an asterisk.

cutoff_merge_ratio

A numeric(1) specifying the threshold for merging or not layer assignments (by
default). This is a proportion of the difference between the current correlation
and the next highest given the units of the next highest correlation. Defaults to
a difference of 25% of the next highest correlation: if the observed difference
is lower than this threshold, then we keep merging. Higher values will lead to
more layers (by default) being merged.

Details

If you change the input modeling_results to layer_stat_cor() then the interpretation of this
function could change. For example, maybe you have your own spatially-resolved transcriptomics
data that doesn’t have to be about DLPFC layers.

Value

A data.frame with 3 columns. Your clusters, the layer_confidence which depends on confidence_threshold,
and the layer_label.

See Also

Other Layer correlation functions: layer_stat_cor(), layer_stat_cor_plot()

10 check_modeling_results

Examples

Obtain the necessary data
if (!exists("modeling_results")) {

modeling_results <- fetch_data(type = "modeling_results")
}

Compute the correlations
cor_stats_layer <- layer_stat_cor(

tstats_Human_DLPFC_snRNAseq_Nguyen_topLayer,
modeling_results,
model_type = "enrichment"

)

Obtain labels
annotate_registered_clusters(cor_stats_layer)

More relaxed merging threshold
annotate_registered_clusters(cor_stats_layer, cutoff_merge_ratio = 1)

check_modeling_results

Check input modeling_results

Description

This function checks that the modeling_results object has the appropriate structure. For more
details please check the vignette documentation.

Usage

check_modeling_results(modeling_results)

Arguments

modeling_results

Defaults to the output of fetch_data(type = 'modeling_results'). This is a
list of tables with the columns f_stat_* or t_stat_* as well as p_value_* and
fdr_* plus ensembl. The column name is used to extract the statistic results,
the p-values, and the FDR adjusted p-values. Then the ensembl column is used
for matching in some cases. See fetch_data() for more details. Typically this
is the set of reference statistics used in layer_stat_cor().

Value

The input object if all checks are passed.

See Also

Other Check input functions: check_sce(), check_sce_layer(), check_spe()

check_sce 11

Examples

if (!exists("modeling_results")) {
modeling_results <- fetch_data(type = "modeling_results")

}

Check the object
xx <- check_modeling_results(modeling_results)

check_sce Check input sce

Description

This function checks that the sce object has the appropriate structure. This is a legacy func-
tion and we highly encourage you to use SpatialExperiment-class objects and check them with
check_spe().

Usage

check_sce(
sce,
variables = c("GraphBased", "ManualAnnotation", "Maynard", "Martinowich",
paste0("SNN_k50_k", 4:28), "spatialLIBD", "cell_count", "sum_umi", "sum_gene",
"expr_chrM", "expr_chrM_ratio", "SpatialDE_PCA", "SpatialDE_pool_PCA", "HVG_PCA",
"pseudobulk_PCA", "markers_PCA", "SpatialDE_UMAP", "SpatialDE_pool_UMAP", "HVG_UMAP",
"pseudobulk_UMAP", "markers_UMAP", "SpatialDE_PCA_spatial",
"SpatialDE_pool_PCA_spatial", "HVG_PCA_spatial", "pseudobulk_PCA_spatial",

"markers_PCA_spatial", "SpatialDE_UMAP_spatial", "SpatialDE_pool_UMAP_spatial",

"HVG_UMAP_spatial", "pseudobulk_UMAP_spatial", "markers_UMAP_spatial")
)

Arguments

sce Defaults to the output of fetch_data(type = 'sce'). This is a SingleCellEx-
periment object with the spot-level Visium data and information required for
visualizing the histology. See fetch_data() for more details.

variables A character() vector of variable names expected to be present in colData(sce).

Value

The input object if all checks are passed.

See Also

Other Check input functions: check_modeling_results(), check_sce_layer(), check_spe()

12 check_sce_layer

Examples

if (enough_ram()) {
Obtain the necessary data
if (!exists("sce_example")) sce_example <- fetch_data("sce_example")

Check the object
check_sce(sce_example)

}

check_sce_layer Check input sce_layer

Description

This function checks that the sce_layer object has the appropriate structure. For more details
please check the vignette documentation.

Usage

check_sce_layer(sce_layer, variables = "spatialLIBD")

Arguments

sce_layer Defaults to the output of fetch_data(type = 'sce_layer'). This is a Single-
CellExperiment object with the spot-level Visium data compressed via pseudo-
bulking to the layer-level (group-level) resolution. See fetch_data() for more
details.

variables A character() vector of variable names expected to be present in colData(sce_layer).

Value

The input object if all checks are passed.

See Also

Other Check input functions: check_modeling_results(), check_sce(), check_spe()

Examples

Obtain example data from the HumanPilot project
(Maynard, Collado-Torres, et al, 2021)
if (!exists("sce_layer")) sce_layer <- fetch_data("sce_layer")

Check the pseudo-bulked data
check_sce_layer(sce_layer)

check_spe 13

check_spe Check input spe

Description

This function checks that the spe object has the appropriate structure. For more details please check
the vignette documentation.

Usage

check_spe(
spe,
variables = c("sum_umi", "sum_gene", "expr_chrM", "expr_chrM_ratio")

)

Arguments

spe A SpatialExperiment-class object. See fetch_data() for how to download
some example objects or read10xVisiumWrapper() to read in spaceranger
--count output files and build your own spe object.

variables A character() vector of variable names expected to be present in colData(spe).

Value

The input object if all checks are passed.

Author(s)

Brenda Pardo, Leonardo Collado-Torres

See Also

Other Check input functions: check_modeling_results(), check_sce(), check_sce_layer()

Examples

if (enough_ram()) {
Obtain the necessary data
if (!exists("spe")) spe <- fetch_data("spe")

Check the object
check_spe(spe)

}

14 cluster_export

cluster_export Export a column with cluster results

Description

This function creates a clusters.csv file similar to the ones created by SpaceRanger at outs/analysis/clustering
but with the key column that combines the barcode and the sample_id, which is needed when the
spe object contains data from multiple samples given that the barcodes are duplicated.

Usage

cluster_export(
spe,
cluster_var,
cluster_dir = file.path(tempdir(), "exported_clusters"),
overwrite = TRUE

)

Arguments

spe A SpatialExperiment-class object. See fetch_data() for how to download
some example objects or read10xVisiumWrapper() to read in spaceranger
--count output files and build your own spe object.

cluster_var A character(1) with the name of the variable you wish to export.

cluster_dir A character(1) specifying the output directory, similar to the outs/analysis/clustering
produced by SpaceRanger.

overwrite A logical(1) indicating whether to overwrite the spe$key.

Value

The path to the exported clusters.csv file.

See Also

Other cluster export/import utility functions: cluster_import()

Examples

if (enough_ram()) {
Obtain the necessary data
if (!exists("spe")) spe <- fetch_data("spe")

Export two cluster variables
cluster_export(spe, "spatialLIBD")
cluster_export(spe, "GraphBased")

}

cluster_import 15

cluster_import Import cluster results

Description

This function imports previously exported clustering results with cluster_export() and adds
them to the colData() slot of your SpatialExperiment-class object.

Usage

cluster_import(
spe,
cluster_dir = file.path(tempdir(), "exported_clusters"),
prefix = "imported_",
overwrite = TRUE

)

Arguments

spe A SpatialExperiment-class object. See fetch_data() for how to download
some example objects or read10xVisiumWrapper() to read in spaceranger
--count output files and build your own spe object.

cluster_dir A character(1) specifying the output directory, similar to the outs/analysis/clustering
produced by SpaceRanger.

prefix A character(1) specifying the prefix to use when naming these new cluster
variables.

overwrite A logical(1) indicating whether to overwrite the spe$key.

Value

A SpatialExperiment-class object with the imported clusters appended on the colData().

See Also

Other cluster export/import utility functions: cluster_export()

Examples

if (enough_ram()) {
Obtain the necessary data
if (!exists("spe")) spe <- fetch_data("spe")

Export two cluster variables
cluster_export(spe, "spatialLIBD")
cluster_export(spe, "GraphBased")

Re-import them
colData(cluster_import(spe))

}

16 fetch_data

enough_ram Determine if you have enough RAM memory

Description

This function determines if you have enough RAM memory on your system.

Usage

enough_ram(how_much = 4e+09)

Arguments

how_much The number of bytes you want to compare against.

Details

If benchmarkme::get_ram() fails, this function will return FALSE as a save bet.

Value

A logical(1) indicating whether your system has enough RAM memory.

Examples

Do you have ~ 4 GB in your system?
enough_ram(4e9)

Do you have ~ 100 GB in your system
enough_ram(100e9)

fetch_data Download the Human DLPFC Visium data from LIBD

Description

This function downloads from ExperimentHub Visium, Visium Spatial Proteogenomics (Visium-
SPG), or single nucleus RNA-seq (snRNA-seq) data and results analyzed by LIBD from multiple
projects. If ExperimentHub is not available, this function will download the files from Dropbox
using BiocFileCache::bfcrpath() unless the files are present already at destdir. Note that
ExperimentHub and BiocFileCache will cache the data and automatically detect if you have pre-
viously downloaded it, thus making it the preferred way to interact with the data.

fetch_data 17

Usage

fetch_data(
type = c("sce", "sce_layer", "modeling_results", "sce_example", "spe",
"spatialDLPFC_Visium", "spatialDLPFC_Visium_example_subset",
"spatialDLPFC_Visium_pseudobulk", "spatialDLPFC_Visium_modeling_results",
"spatialDLPFC_Visium_SPG", "spatialDLPFC_snRNAseq",
"Visium_SPG_AD_Visium_wholegenome_spe", "Visium_SPG_AD_Visium_targeted_spe",
"Visium_SPG_AD_Visium_wholegenome_pseudobulk_spe",

"Visium_SPG_AD_Visium_wholegenome_modeling_results", "visiumStitched_brain_spe",
"visiumStitched_brain_spaceranger", "visiumStitched_brain_Fiji_out"),

destdir = tempdir(),
eh = ExperimentHub::ExperimentHub(),
bfc = BiocFileCache::BiocFileCache()

)

Arguments

type A character(1) specifying which file you want to download. It can either
be: sce for the SingleCellExperiment object containing the spot-level data that
includes the information for visualizing the clusters/genes on top of the Visium
histology, sce_layer for the SingleCellExperiment object containing the layer-
level data (pseudo-bulked from the spot-level), or modeling_results for the
list of tables with the enrichment, pairwise, and anova model results from the
layer-level data. It can also be sce_example which is a reduced version of sce
just for example purposes. The initial version of spatialLIBD downloaded data
only from https://github.com/LieberInstitute/HumanPilot. As of BioC
version 3.13 spe downloads a SpatialExperiment-class object. As of version
1.11.6, this function also allows downloading data from the http://research.
libd.org/spatialDLPFC/ project. As of version 1.11.12, data from https:
//github.com/LieberInstitute/Visium_SPG_AD can be downloaded.

destdir The destination directory to where files will be downloaded to in case the ExperimentHub
resource is not available. If you already downloaded the files, you can set this
to the current path where the files were previously downloaded to avoid re-
downloading them.

eh An ExperimentHub object ExperimentHub-class.

bfc A BiocFileCache object BiocFileCache-class. Used when eh is not available.

Details

The data was initially prepared by scripts at https://github.com/LieberInstitute/HumanPilot and fur-
ther refined by https://github.com/LieberInstitute/spatialLIBD/blob/master/inst/scripts/make-data_spatialLIBD.R.

Value

The requested object: sce, sce_layer, ve or modeling_results that you have to assign to an
object. If you didn’t you can still avoid re-loading the object by using .Last.value.

Examples

Download the SingleCellExperiment object
at the layer-level
if (!exists("sce_layer")) sce_layer <- fetch_data("sce_layer")

https://github.com/LieberInstitute/HumanPilot
http://research.libd.org/spatialDLPFC/
http://research.libd.org/spatialDLPFC/
https://github.com/LieberInstitute/Visium_SPG_AD
https://github.com/LieberInstitute/Visium_SPG_AD

18 frame_limits

Explore the data
sce_layer

How to download and load "spatialDLPFC_snRNAseq"
Not run:
sce_path_zip <- fetch_data("spatialDLPFC_snRNAseq")
sce_path <- unzip(sce_path_zip, exdir = tempdir())
sce <- HDF5Array::loadHDF5SummarizedExperiment(

file.path(tempdir(), "sce_DLPFC_annotated")
)
sce
#> class: SingleCellExperiment
#> dim: 36601 77604
#> metadata(3): Samples cell_type_colors cell_type_colors_broad
#> assays(2): counts logcounts
#> rownames(36601): MIR1302-2HG FAM138A ... AC007325.4 AC007325.2
#> rowData names(7): source type ... gene_type binomial_deviance
#> colnames(77604): 1_AAACCCAAGTTCTCTT-1 1_AAACCCACAAGGTCTT-1 ... 19_TTTGTTGTCTCATTGT-1 19_TTTGTTGTCTTAAGGC-1
#> colData names(32): Sample Barcode ... cellType_layer layer_annotation
#> reducedDimNames(4): GLMPCA_approx TSNE UMAP HARMONY
#> mainExpName: NULL
#> altExpNames(0):
lobstr::obj_size(sce)
#> 172.28 MB

End(Not run)

frame_limits Identify the image limits

Description

This function is useful for automatically cropping the images. It finds the edge points (min and
max on both the X and Y axis) in pixels based on a particular image. This function takes advantage
of the known design of Visium slides as documented at https://support.10xgenomics.com/
spatial-gene-expression/software/pipelines/latest/output/spatial and https://kb.
10xgenomics.com/hc/en-us/articles/360041426992. That is, that for a regular Visium slide,
the array row has a range from 0 to 77, the array col from 0 to 127, the capture area has a 6.5 mm
edge length, the the fiducial frame area has an edge of 8 mm, and spot centers are about 100 um
from each other.

Usage

frame_limits(
spe,
sampleid,
image_id = "lowres",
visium_grid = list(row_min = 0, row_max = 77, col_min = 0, col_max = 127,
fiducial_vs_capture_edge = (8 - 6.5) * 1000/2/100)

)

https://support.10xgenomics.com/spatial-gene-expression/software/pipelines/latest/output/spatial
https://support.10xgenomics.com/spatial-gene-expression/software/pipelines/latest/output/spatial
https://kb.10xgenomics.com/hc/en-us/articles/360041426992
https://kb.10xgenomics.com/hc/en-us/articles/360041426992

gene_set_enrichment 19

Arguments

spe A SpatialExperiment-class object. See fetch_data() for how to download
some example objects or read10xVisiumWrapper() to read in spaceranger
--count output files and build your own spe object.

sampleid A character(1) specifying which sample to plot from colData(spe)$sample_id
(formerly colData(spe)$sample_name).

image_id A character(1) with the name of the image ID you want to use in the back-
ground.

visium_grid A named list with the parameters known about the Visium grid. This can change
for Visium HD vs regular Visium for example.

Value

A named list with y_min, y_max, x_min, and x_max pixels from the selected image that can be used
for cropping the image.

Author(s)

Louise Huuki-Myers and Leonardo Collado-Torres

See Also

Other Spatial cluster visualization functions: vis_clus(), vis_clus_p(), vis_grid_clus(), vis_image()

Examples

if (enough_ram()) {
Obtain the necessary data
if (!exists("spe")) spe <- fetch_data("spe")

Obtain the frame limits for one sample
frame_limits(spe, sampleid = "151673")

}

gene_set_enrichment Evaluate the enrichment for a list of gene sets

Description

Using the layer-level (group-level) data, this function evaluates whether list of gene sets (Ensembl
gene IDs) are enriched among the significant genes (FDR < 0.1 by default) genes for a given model
type result. Test the alternative hypothesis that OR > 1, i.e. that gene set is over-represented in the
set of enriched genes. If you want to check depleted genes, change reverse to TRUE.

20 gene_set_enrichment

Usage

gene_set_enrichment(
gene_list,
fdr_cut = 0.1,
modeling_results = fetch_data(type = "modeling_results"),
model_type = names(modeling_results)[1],
reverse = FALSE

)

Arguments

gene_list A named list object (could be a data.frame) where each element of the list is
a character vector of Ensembl gene IDs.

fdr_cut A numeric(1) specifying the FDR cutoff to use for determining significance
among the modeling results genes.

modeling_results

Defaults to the output of fetch_data(type = 'modeling_results'). This is a
list of tables with the columns f_stat_* or t_stat_* as well as p_value_* and
fdr_* plus ensembl. The column name is used to extract the statistic results,
the p-values, and the FDR adjusted p-values. Then the ensembl column is used
for matching in some cases. See fetch_data() for more details. Typically this
is the set of reference statistics used in layer_stat_cor().

model_type A named element of the modeling_results list. By default that is either enrichment
for the model that tests one human brain layer against the rest (one group vs the
rest), pairwise which compares two layers (groups) denoted by layerA-layerB
such that layerA is greater than layerB, and anova which determines if any
layer (group) is different from the rest adjusting for the mean expression level.
The statistics for enrichment and pairwise are t-statistics while the anova
model ones are F-statistics.

reverse A logical(1) indicating whether to multiply by -1 the input statistics and re-
verse the layerA-layerB column names (using the -) into layerB-layerA.

Details

Check https://github.com/LieberInstitute/HumanPilot/blob/master/Analysis/Layer_Guesses/check_clinical_gene_sets.R
to see a full script from where this family of functions is derived from.

Value

A table in long format with the enrichment results using stats::fisher.test().

• OR odds ratio.

• Pval p-value for fisher.test().

• test group or layer in the modeling_results.

• NumSig Number of genes from the gene set present in modeling_results & with fdr <
fdr_cut and t_stat > 0 (unless reverse = TRUE) for test in modeling results.

• SetSize Number of genes from modeling_results present in gene_set.

• ID name of gene set.

• model_type record of input model type from modeling results.

• fdr_cut record of input frd_cut.

gene_set_enrichment_plot 21

Author(s)

Andrew E Jaffe, Leonardo Collado-Torres

See Also

Other Gene set enrichment functions: gene_set_enrichment_plot()

Examples

Read in the SFARI gene sets included in the package
asd_sfari <- utils::read.csv(

system.file(
"extdata",
"SFARI-Gene_genes_01-03-2020release_02-04-2020export.csv",
package = "spatialLIBD"

),
as.is = TRUE

)

Format them appropriately
asd_sfari_geneList <- list(

Gene_SFARI_all = asd_sfari$ensembl.id,
Gene_SFARI_high = asd_sfari$ensembl.id[asd_sfari$gene.score < 3],
Gene_SFARI_syndromic = asd_sfari$ensembl.id[asd_sfari$syndromic == 1]

)

Obtain the necessary data
if (!exists("modeling_results")) {

modeling_results <- fetch_data(type = "modeling_results")
}

Compute the gene set enrichment results
asd_sfari_enrichment <- gene_set_enrichment(

gene_list = asd_sfari_geneList,
modeling_results = modeling_results,
model_type = "enrichment"

)

Explore the results
asd_sfari_enrichment

gene_set_enrichment_plot

Plot the gene set enrichment results with ComplexHeatmap

Description

This function takes the output of gene_set_enrichment() and creates a ComplexHeatmap visual-
ization of the results. Fill of the heatmap represents the -log10(p-val), Odds-ratios are printed for
test that pass specified significance threshold ORcut.

22 gene_set_enrichment_plot

Usage

gene_set_enrichment_plot(
enrichment,
xlabs = unique(enrichment$ID),
PThresh = 12,
ORcut = 3,
enrichOnly = FALSE,
mypal = c("white", RColorBrewer::brewer.pal(9, "YlOrRd")),
plot_SetSize_bar = FALSE,
gene_list_length = NULL,
model_sig_length = NULL,
model_colors = NULL,
...

)

Arguments

enrichment The output of gene_set_enrichment().

xlabs A vector of names in the same order and length as unique(enrichment$ID).

PThresh A numeric(1) specifying the P-value threshold for the maximum value in the
-log10(p) scale.

ORcut A numeric(1) specifying the P-value threshold for the minimum value in the
-log10(p) scale for printing the odds ratio values in the cells of the resulting
plot. Defaults to 3 or p-val < 0.001.

enrichOnly A logical(1) indicating whether to show only odds ratio values greater than 1.

mypal A character vector with the color palette to use. Colors will be in order from 0
to lowest P-val max(-log(enrichment$Pval)). Defaults to white, yellow, red
pallet.

plot_SetSize_bar

A logical(1) indicating whether to plot SetSize from enrichment as an anno_barplot
at the top of the heatmap.

gene_list_length

Optional named numeric vector indicating the length of the gene_list used to
calculate enrichment, if included and plot_setSize_bar = TRUE then the top
anno_barplot will show the SetSize and the difference from the length of the
input gene_list.

model_sig_length

Optional named numeric vector indicating the number of significant genes in
modeling_results used to calculate enrichment. If included anno_barplot
will be added to rows.

model_colors named character vector of colors. It adds colors to row annotations.

... Additional parameters passed to ComplexHeatmap::Heatmap().

Details

Includes functionality to plot the size of the input gene sets as barplot annotations.

Check https://github.com/LieberInstitute/HumanPilot/blob/master/Analysis/Layer_Guesses/check_clinical_gene_sets.R
to see a full script from where this family of functions is derived from.

gene_set_enrichment_plot 23

Value

A (Heatmap-class) visualizing the gene set enrichment odds ratio and p-value results.

Author(s)

Andrew E Jaffe, Leonardo Collado-Torres, Louise Huuki-Myers

See Also

Other Gene set enrichment functions: gene_set_enrichment()

Examples

Read in the SFARI gene sets included in the package
asd_sfari <- utils::read.csv(

system.file(
"extdata",
"SFARI-Gene_genes_01-03-2020release_02-04-2020export.csv",
package = "spatialLIBD"

),
as.is = TRUE

)

Format them appropriately
asd_safari_geneList <- list(

Gene_SFARI_all = asd_sfari$ensembl.id,
Gene_SFARI_high = asd_sfari$ensembl.id[asd_sfari$gene.score < 3],
Gene_SFARI_syndromic = asd_sfari$ensembl.id[asd_sfari$syndromic == 1]

)

Obtain the necessary data
if (!exists("modeling_results")) {

modeling_results <- fetch_data(type = "modeling_results")
}

Compute the gene set enrichment results
asd_sfari_enrichment <- gene_set_enrichment(

gene_list = asd_safari_geneList,
modeling_results = modeling_results,
model_type = "enrichment"

)

Visualize the gene set enrichment results

Default plot
gene_set_enrichment_plot(

enrichment = asd_sfari_enrichment
)

Use a custom green color palette & use shorter gene set names
(x-axis labels)
gene_set_enrichment_plot(

asd_sfari_enrichment,
xlabs = gsub(".*_", "", unique(asd_sfari_enrichment$ID)),
mypal = c("white", RColorBrewer::brewer.pal(9, "BuGn"))

)

24 gene_set_enrichment_plot

Add bar plot annotations for SetSize of model genes in the gene_lists
gene_set_enrichment_plot(

asd_sfari_enrichment,
xlabs = gsub(".*_", "", unique(asd_sfari_enrichment$ID)),
plot_SetSize_bar = TRUE

)

Add stacked bar plot annotations showing SetSize and difference from the
length of the input gene_list
gene_set_enrichment_plot(

asd_sfari_enrichment,
xlabs = gsub(".*_", "", unique(asd_sfari_enrichment$ID)),
plot_SetSize_bar = TRUE,
gene_list_length = lapply(asd_safari_geneList, length)

)

add bar plot annotations for number of enriched genes from layers
if (!exists("sce_layer")) sce_layer <- fetch_data(type = "sce_layer")
sig_genes <- sig_genes_extract(

modeling_results = modeling_results,
model = "enrichment",
sce_layer = sce_layer,
n = nrow(sce_layer)

)

sig_genes <- sig_genes[sig_genes$fdr < 0.1,]
n_sig_model <- as.list(table(sig_genes$test))

add barplot with n significant genes from modeling
gene_set_enrichment_plot(

asd_sfari_enrichment,
xlabs = gsub(".*_", "", unique(asd_sfari_enrichment$ID)),
plot_SetSize_bar = TRUE,
model_sig_length = n_sig_model

)

add color annotations
gene_set_enrichment_plot(

asd_sfari_enrichment,
xlabs = gsub(".*_", "", unique(asd_sfari_enrichment$ID)),
plot_SetSize_bar = TRUE,
model_colors = libd_layer_colors

)

add barplot with n significant genes from modeling filled with model color
gene_set_enrichment_plot(

asd_sfari_enrichment,
xlabs = gsub(".*_", "", unique(asd_sfari_enrichment$ID)),
plot_SetSize_bar = TRUE,
model_sig_length = n_sig_model,
model_colors = libd_layer_colors

)

geom_spatial 25

geom_spatial A ggplot2 layer for visualizing the Visium histology

Description

This function defines a ggplot2::layer() for visualizing the histology image from Visium. It
can be combined with other ggplot2 functions for visualizing the clusters as in vis_clus_p() or
gene-level information as in vis_gene_p().

Usage

geom_spatial(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = FALSE,
...

)

Arguments

mapping Passed to ggplot2::layer(mapping) where grob, x and y are required.

data Passed to ggplot2::layer(data).

stat Passed to ggplot2::layer(stat).

position Passed to ggplot2::layer(position).

na.rm Passed to ggplot2::layer(params = list(na.rm)).

show.legend Passed to ggplot2::layer(show.legend).

inherit.aes Passed to ggplot2::layer(inherit.aes).

... Other arguments passed to ggplot2::layer(params = list(...)).

Value

A ggplot2::layer() for the histology information.

Author(s)

10x Genomics

Examples

if (enough_ram()) {
Obtain the necessary data
if (!exists("spe")) spe <- fetch_data("spe")

Select the first sample and extract the data
sample_id <- unique(spe$sample_id)[1]
spe_sub <- spe[, spe$sample_id == sample_id]

26 get_colors

sample_df <- as.data.frame(colData(spe_sub), optional = TRUE)

Obtain the histology image
img <- SpatialExperiment::imgRaster(spe_sub)

Transform to a rasterGrob object
grob <- grid::rasterGrob(img, width = grid::unit(1, "npc"), height = grid::unit(1, "npc"))

Make a plot using geom_spatial
p <- ggplot2::ggplot(

sample_df,
ggplot2::aes(

x = pxl_col_in_fullres * SpatialExperiment::scaleFactors(spe_sub),
y = pxl_row_in_fullres * SpatialExperiment::scaleFactors(spe_sub),

)
) +

geom_spatial(
data = tibble::tibble(grob = list(grob)),
ggplot2::aes(grob = grob),
x = 0.5,
y = 0.5

)

Show the plot
print(p)

Clean up
rm(spe_sub)

}

get_colors Obtain the colors for a set of cluster names

Description

This function returns a vector of colors based on a vector of cluster names. It can be used to
automatically assign colors.

Usage

get_colors(colors = NULL, clusters)

Arguments

colors A vector of colors. If NULL then a set of default colors will be used when
clusters has less than 12 unique values, otherwise Polychrome::palette36
will be used which can generate up to 36 unique colors. If the number of unique
clusters is beyond 36 then this function will fail.

clusters A vector of cluster names.

Value

A named vector where the values are the colors to use for displaying them different clusters. For
some use cases, you might have to either change the names or use unname().

img_edit 27

Examples

Obtain the necessary data
if (!exists("sce_layer")) sce_layer <- fetch_data("sce_layer")

Example layer colors with the corresponding names
get_colors(libd_layer_colors, sce_layer$layer_guess)
get_colors(libd_layer_colors, sce_layer$layer_guess_reordered_short)

Example where colors are assigned automatically
based on a pre-defined set of colors
get_colors(clusters = sce_layer$kmeans_k7)

Example where Polychrome::palette36.colors() gets used
get_colors(clusters = letters[seq_len(13)])

What happens if you have a logical variable with NAs?
set.seed(20240712)
log_var <- sample(c(TRUE, FALSE, NA),

1000,
replace = TRUE,
prob = c(0.3, 0.15, 0.55)

)
log_var_sorted <- sort_clusters(log_var)
get_colors(colors = NULL, clusters = log_var_sorted)

img_edit Edit a background image

Description

This function uses the magick package to edit the color and perform other image manipulations on
a background image. It can be useful if you want to highlight certain features of these images.

Usage

img_edit(
spe,
sampleid,
image_id = "lowres",
channel = NA,
brightness = 100,
saturation = 100,
hue = 100,
enhance = FALSE,
contrast_sharpen = NA,
quantize_max = NA,
quantize_dither = TRUE,
equalize = FALSE,
normalize = FALSE,
transparent_color = NA,
transparent_fuzz = 0,
background_color = NA,

28 img_edit

median_radius = NA,
negate = FALSE

)

Arguments

spe A SpatialExperiment-class object. See fetch_data() for how to download
some example objects or read10xVisiumWrapper() to read in spaceranger
--count output files and build your own spe object.

sampleid A character(1) specifying which sample to plot from colData(spe)$sample_id
(formerly colData(spe)$sample_name).

image_id A character(1) with the name of the image ID you want to use in the back-
ground.

channel A character(1) passed to magick::image_channel. If NA this step is skipped.

brightness A numeric(1) passed to magick::image_modulate.

saturation A numeric(1) passed to magick::image_modulate.

hue A numeric(1) passed to magick::image_modulate.

enhance A logical(1) controlling whether to use magick::enhance.
contrast_sharpen

A numeric(1) passed to magick::image_contrast. If NA this step is skipped.

quantize_max A numeric(1) passed to magick::image_quantize. If NA this step is skipped.
quantize_dither

A logical(1) passed to magick::image_quantize.

equalize A logical(1) controlling whether to use magick::equalize.

normalize A logical(1) controlling whether to use magick::normalize.
transparent_color

A character(1) passed to magick::image_transparent. If NA this step is skipped.
transparent_fuzz

A numeric(1) passed to magick::image_transparent.
background_color

A character(1) passed to magick::image_background. If NA this step is skipped.

median_radius A numeric(1) passed to magick::image_median. If NA this step is skipped.

negate A logical(1) controlling whether to use magick::negate.

Details

The magick functions are used in the sequence represented by the arguments to this function. You
can alternatively use this function sequentially. Or directly use the magick package.

Value

A magick image object such as the one returned by magick::image_read.

See Also

Other Image editing functions: img_update(), img_update_all()

img_update 29

Examples

if (enough_ram()) {
Obtain the necessary data
if (!exists("spe")) spe <- fetch_data("spe")

Reduce brightness to 25%
x <- img_edit(spe, sampleid = "151507", brightness = 25)
plot(x)

}

img_update Update the image for one sample

Description

Edit the image with img_edit() then update the imgData().

Usage

img_update(
spe,
sampleid,
image_id = "lowres",
new_image_id = paste0("edited_", image_id),
overwrite = FALSE,
...

)

Arguments

spe A SpatialExperiment-class object. See fetch_data() for how to download
some example objects or read10xVisiumWrapper() to read in spaceranger
--count output files and build your own spe object.

sampleid A character(1) specifying which sample to plot from colData(spe)$sample_id
(formerly colData(spe)$sample_name).

image_id A character(1) with the name of the image ID you want to use in the back-
ground.

new_image_id A character(1) specifying the new image_id to use.

overwrite A logical(1) specifying whether to overwrite the image_id if it already exists.

... Parameters passed to img_edit().

Value

A SpatialExperiment-class object with an updated imgData() slot.

See Also

Other Image editing functions: img_edit(), img_update_all()

30 img_update_all

Examples

if (enough_ram()) {
Obtain the necessary data
if (!exists("spe")) spe <- fetch_data("spe")

Reduce brightness to 25% and update the imgData()
imgData(img_update(spe, sampleid = "151507", brightness = 25))

}

img_update_all Update the images for all samples

Description

This function uses img_update() for all samples. That is, it loops through every sample and edits
the image with img_edit() and then updates the imgData().

Usage

img_update_all(
spe,
image_id = "lowres",
new_image_id = paste0("edited_", image_id),
overwrite = FALSE,
...

)

Arguments

spe A SpatialExperiment-class object. See fetch_data() for how to download
some example objects or read10xVisiumWrapper() to read in spaceranger
--count output files and build your own spe object.

image_id A character(1) with the name of the image ID you want to use in the back-
ground.

new_image_id A character(1) specifying the new image_id to use.

overwrite A logical(1) specifying whether to overwrite the image_id if it already exists.

... Parameters passed to img_edit().

Value

A SpatialExperiment-class object with an updated imgData() slot.

See Also

Other Image editing functions: img_edit(), img_update()

layer_boxplot 31

Examples

if (enough_ram()) {
Obtain the necessary data
if (!exists("spe")) spe <- fetch_data("spe")

Reduce brightness to 25% for the 'lowres' image for all samples and
update the imgData()
imgData(img_update_all(spe, brightness = 25))

}

layer_boxplot Layer-level (group-level) boxplots

Description

This function uses the output of sig_genes_extract_all() as well as the logcounts from the
layer-level (group-level) data to visualize the expression of a given gene and display the modeling
results for the given gene.

Usage

layer_boxplot(
i = 1,
sig_genes = sig_genes_extract(),
short_title = TRUE,
sce_layer = fetch_data(type = "sce_layer"),
col_bkg_box = "grey80",
col_bkg_point = "grey40",
col_low_box = "violet",
col_low_point = "darkviolet",
col_high_box = "skyblue",
col_high_point = "dodgerblue4",
cex = 2,
group_var = "layer_guess_reordered_short",
assayname = "logcounts"

)

Arguments

i A integer(1) indicating which row of sig_genes do you want to plot.

sig_genes The output of sig_genes_extract_all().

short_title A logical(1) indicating whether to print a short title or not.

sce_layer Defaults to the output of fetch_data(type = 'sce_layer'). This is a Single-
CellExperiment object with the spot-level Visium data compressed via pseudo-
bulking to the layer-level (group-level) resolution. See fetch_data() for more
details.

col_bkg_box Box background color for layers not used when visualizing the pairwise model
results.

col_bkg_point Similar to col_bkg_box but for the points.

32 layer_boxplot

col_low_box Box background color for layer(s) with the expected lower expression based on
the actual test for row i of sig_genes.

col_low_point Similar to col_low_box but for the points.

col_high_box Similar to col_low_box but for the expected layer(s) with higher expression.

col_high_point Similar to col_high_box but for the points.

cex Controls the size of the text, points and axis legends.

group_var A character(1) specifying a colData(sce_layer) column name to use for
the x-axis.

assayname A character(1) specifying the default assay to use from assays(sce_layer).

Value

This function creates a boxplot of the layer-level data (group-level) separated by layer and colored
based on the model type from row i of sig_genes.

References

Adapted from https://github.com/LieberInstitute/HumanPilot/blob/master/Analysis/Layer_Guesses/layer_specificity.R

See Also

Other Layer modeling functions: sig_genes_extract(), sig_genes_extract_all()

Examples

Obtain the necessary data
if (!exists("modeling_results")) {

modeling_results <- fetch_data(type = "modeling_results")
}
if (!exists("sce_layer")) sce_layer <- fetch_data(type = "sce_layer")

Top 2 genes from the enrichment model
sig_genes <- sig_genes_extract_all(

n = 2,
modeling_results = modeling_results,
sce_layer = sce_layer

)

Example default boxplot
set.seed(20200206)
layer_boxplot(sig_genes = sig_genes, sce_layer = sce_layer)

Now show the long title version
set.seed(20200206)
layer_boxplot(

sig_genes = sig_genes,
short_title = FALSE,
sce_layer = sce_layer

)

set.seed(20200206)
layer_boxplot(

i = which(sig_genes$model_type == "anova")[1],
sig_genes = sig_genes,

layer_stat_cor 33

sce_layer = sce_layer
)

set.seed(20200206)
layer_boxplot(

i = which(sig_genes$model_type == "pairwise")[1],
sig_genes = sig_genes,
sce_layer = sce_layer

)

Viridis colors displayed in the shiny app
library("viridisLite")
set.seed(20200206)
layer_boxplot(

sig_genes = sig_genes,
sce_layer = sce_layer,
col_low_box = viridis(4)[2],
col_low_point = viridis(4)[1],
col_high_box = viridis(4)[3],
col_high_point = viridis(4)[4]

)

Paper colors displayed in the shiny app
set.seed(20200206)
layer_boxplot(

sig_genes = sig_genes,
sce_layer = sce_layer,
col_low_box = "palegreen3",
col_low_point = "springgreen2",
col_high_box = "darkorange2",
col_high_point = "orange1"

)

Blue/red colors displayed in the shiny app
set.seed(20200206)
layer_boxplot(

i = which(sig_genes$model_type == "pairwise")[1],
sig_genes = sig_genes,
sce_layer = sce_layer,
col_bkg_box = "grey90",
col_bkg_point = "grey60",
col_low_box = "skyblue2",
col_low_point = "royalblue3",
col_high_box = "tomato2",
col_high_point = "firebrick4",
cex = 3

)

layer_stat_cor Layer modeling correlation of statistics

Description

Layer modeling correlation of statistics

34 layer_stat_cor

Usage

layer_stat_cor(
stats,
modeling_results = fetch_data(type = "modeling_results"),
model_type = names(modeling_results)[1],
reverse = FALSE,
top_n = NULL

)

Arguments

stats A query data.frame where the row names are ENSEMBL gene IDs, the col-
umn names are labels for clusters of cells or cell types, and where each cell
contains the given statistic for that gene and cell type. These statistics should
be computed similarly to the modeling results from the data we provide. For
example, like the enrichment t-statistics that are derived from comparing one
layer against the rest. The stats will be matched and then correlated with the
reference statistics.
If using the output of registration_wrapper() then use $enrichment to ac-
cess the results from registration_stats_enrichment(). This function will
automatically extract the statistics and assign the ENSEMBL gene IDs to the
row names of the query matrix.

modeling_results

Defaults to the output of fetch_data(type = 'modeling_results'). This is a
list of tables with the columns f_stat_* or t_stat_* as well as p_value_* and
fdr_* plus ensembl. The column name is used to extract the statistic results,
the p-values, and the FDR adjusted p-values. Then the ensembl column is used
for matching in some cases. See fetch_data() for more details. Typically this
is the set of reference statistics used in layer_stat_cor().

model_type A named element of the modeling_results list. By default that is either enrichment
for the model that tests one human brain layer against the rest (one group vs the
rest), pairwise which compares two layers (groups) denoted by layerA-layerB
such that layerA is greater than layerB, and anova which determines if any
layer (group) is different from the rest adjusting for the mean expression level.
The statistics for enrichment and pairwise are t-statistics while the anova
model ones are F-statistics.

reverse A logical(1) indicating whether to multiply by -1 the input statistics and re-
verse the layerA-layerB column names (using the -) into layerB-layerA.

top_n An integer(1) specifying whether to filter to the top n marker genes. The
default is NULL in which case no filtering is done.

Details

Check https://github.com/LieberInstitute/HumanPilot/blob/master/Analysis/Layer_Guesses/dlpfc_snRNAseq_annotation.R
for a full analysis from which this family of functions is derived from.

Value

A correlation matrix between the query stats and the reference statistics using only the ENSEMBL
gene IDs present in both tables. The columns are sorted using hierarchical clustering.

layer_stat_cor_plot 35

Author(s)

Andrew E Jaffe, Leonardo Collado-Torres

See Also

Other Layer correlation functions: annotate_registered_clusters(), layer_stat_cor_plot()

Examples

Obtain the necessary data
if (!exists("modeling_results")) {

modeling_results <- fetch_data(type = "modeling_results")
}

Compute the correlations
cor_stats_layer <- layer_stat_cor(

tstats_Human_DLPFC_snRNAseq_Nguyen_topLayer,
modeling_results,
model_type = "enrichment"

)

Explore the correlation matrix
head(cor_stats_layer[, seq_len(3)])
summary(cor_stats_layer)

Repeat with top_n set to 10
summary(layer_stat_cor(

tstats_Human_DLPFC_snRNAseq_Nguyen_topLayer,
modeling_results,
model_type = "enrichment",
top_n = 10

))

layer_stat_cor_plot Visualize the correlation of layer modeling t-statistics with Complex-
Heatmap

Description

This function makes a ComplexHeatmap from the correlation matrix between a reference and query
modeling statistics from layer_stat_cor(). For example, between the query statistics from a
set of cell cluster/types derived from scRNA-seq or snRNA-seq data (among other types) and the
reference layer statistics from the Human DLPFC Visium data (when using the default arguments).

Usage

layer_stat_cor_plot(
cor_stats_layer,
color_max = max(cor_stats_layer),
color_min = min(cor_stats_layer),
color_scale = RColorBrewer::brewer.pal(7, "PRGn"),
query_colors = NULL,
reference_colors = NULL,

36 layer_stat_cor_plot

annotation = NULL,
...

)

Arguments

cor_stats_layer

The output of layer_stat_cor().

color_max A numeric(1) specifying the highest correlation value for the color scale (should
be between 0 and 1).

color_min A numeric(1) specifying the lowest correlation value for the color scale (should
be between 0 and -1).

color_scale A character vector with three or more values specifying the color scale for the
fill of the heatmap. The first value is used for color_min, the middle for zero,
and the last for color_max. If an even number of colors are supplied, the last
color is dropped to center zero.

query_colors named character vector of colors, Adds colors to query row annotations.
reference_colors

named character vector of colors, Adds colors to reference column annota-
tions.

annotation annotation data.frame output of annotate_registered_clusters(), adds ’X’
for good confidence annotations, ’*’ for poor confidence.

... Additional parameters passed to ComplexHeatmap::Heatmap() such as cluster_rows
and cluster_columns.

Details

Includes functionality to add color annotations, (helpful to match to colors in Visium spot plots),
and annotations from annotate_registered_clusters().

Value

(Heatmap-class) plot of t-stat correlations

Author(s)

Louise Huuki-Myers

See Also

Other Layer correlation functions: annotate_registered_clusters(), layer_stat_cor()

Examples

Obtain the necessary data
reference human pilot modeling results
if (!exists("modeling_results")) {

modeling_results <- fetch_data(type = "modeling_results")
}

query spatialDLPFC modeling results
query_modeling_results <- fetch_data(

type = "spatialDLPFC_Visium_modeling_results"

layer_stat_cor_plot 37

)

Compute the correlations
cor_stats_layer <- layer_stat_cor(

stats = query_modeling_results$enrichment,
modeling_results,
model_type = "enrichment"

)

Visualize the correlation matrix

Default plot with no annotations and defaults for ComplexHeatmap()
layer_stat_cor_plot(cor_stats_layer)

add Annotation colors
add libd_layer_colors to reference Human Pilot layers
layer_stat_cor_plot(cor_stats_layer, reference_colors = libd_layer_colors)

obtain colors for the query clusters
cluster_colors <- get_colors(clusters = rownames(cor_stats_layer))
layer_stat_cor_plot(cor_stats_layer,

query_colors = cluster_colors,
reference_colors = libd_layer_colors

)

Apply additional ComplexHeatmap param
layer_stat_cor_plot(cor_stats_layer,

cluster_rows = FALSE,
cluster_columns = FALSE

)

Add annotation
annotation_df <- annotate_registered_clusters(

cor_stats_layer,
confidence_threshold = .55

)
layer_stat_cor_plot(cor_stats_layer, annotation = annotation_df)

change fill color scale
layer_stat_cor_plot(cor_stats_layer,

color_scale = RColorBrewer::brewer.pal(2, "PiYG")
)

All together
layer_stat_cor_plot(

cor_stats_layer,
color_scale = RColorBrewer::brewer.pal(5, "PiYG"),
query_colors = cluster_colors,
reference_colors = libd_layer_colors,
annotation = annotation_df,
cluster_rows = FALSE,
cluster_columns = FALSE

)

38 locate_images

libd_layer_colors Vector of LIBD layer colors

Description

A named vector of colors to use for the LIBD layers designed by Lukas M. Weber with feedback
from the spatialLIBD collaborators.

Usage

libd_layer_colors

Format

A vector of length 9 with colors for Layers 1 through 9, WM, NA and a special WM2 that is present
in some of the unsupervised clustering results.

locate_images Locate image files

Description

Creates a named character() vector that can be helpful for locating image files and used with
add_images(). This function is not necessary if the image files don’t use the spe$sample_id.

Usage

locate_images(spe, image_dir, image_pattern)

Arguments

spe A SpatialExperiment-class object. See fetch_data() for how to download
some example objects or read10xVisiumWrapper() to read in spaceranger
--count output files and build your own spe object.

image_dir A character(1) specifying a path to a directory containing image files with the
pattern sampleID_pattern.png.

image_pattern A character(1) specifying the pattern for the image files.

Value

A named character() vector with the path to images.

See Also

Other Functions for adding non-standard images: add_images()

Examples

Not run:
locate_images(spe, tempdir(), "testImage")

End(Not run)

multi_gene_pca 39

multi_gene_pca Combine multiple continuous variables through PCA

Description

PCA is performed on cont_mat, the matrix of multiple continuous features. The first PC is returned,
representing the dominant spatial signature of the feature set. Its direction is negated if necessary so
that the majority of coefficients across features are positive (when the features are highly correlated,
this encourages spots with higher values to represent areas of higher expression of the features).

Usage

multi_gene_pca(cont_mat)

Arguments

cont_mat A matrix() with spots as rows and 2 or more continuous variables as columns.

Value

A numeric() vector with one element per spot, summarizing the multiple continuous variables.

Author(s)

Nicholas J. Eagles

See Also

Other functions for summarizing expression of multiple continuous variables simultaneously: multi_gene_sparsity(),
multi_gene_z_score()

multi_gene_sparsity Combine multiple continuous variables by proportion of positive val-
ues

Description

To summarize multiple features, the proportion of features with positive values for each spot is
computed.

Usage

multi_gene_sparsity(cont_mat)

Arguments

cont_mat A matrix() with spots as rows and 2 or more continuous variables as columns.

Value

A numeric() vector with one element per spot, summarizing the multiple continuous variables.

40 prep_stitched_data

Author(s)

Nicholas J. Eagles

See Also

Other functions for summarizing expression of multiple continuous variables simultaneously: multi_gene_pca(),
multi_gene_z_score()

multi_gene_z_score Combine multiple continuous variables by averaging Z scores

Description

To summarize multiple features, each is normalized to represent a Z-score. Scores are averaged to
return a single vector.

Usage

multi_gene_z_score(cont_mat)

Arguments

cont_mat A matrix() with spots as rows and 2 or more continuous variables as columns.

Value

A numeric() vector with one element per spot, summarizing the multiple continuous variables.

Author(s)

Nicholas J. Eagles

See Also

Other functions for summarizing expression of multiple continuous variables simultaneously: multi_gene_pca(),
multi_gene_sparsity()

prep_stitched_data Prepare stitched data for plotting

Description

Given a SpatialExperiment built with visiumStitched::build_spe() http://research.libd.
org/visiumStitched/reference/build_spe.html, drop excluded spots (specified by spe$exclude_overlapping)
and compute an appropriate spot size for plotting with vis_gene() or vis_clus(), assuming the
plot will be written to a PDF of default dimensions (i.e. width = 7 and height = 7).

Usage

prep_stitched_data(spe, point_size, image_id)

http://research.libd.org/visiumStitched/reference/build_spe.html
http://research.libd.org/visiumStitched/reference/build_spe.html

read10xVisiumAnalysis 41

Arguments

spe A SpatialExperiment built with visiumStitched::build_spe(), containing
a logical spe$exclude_overlapping column specifying which spots to display
in plots

point_size A numeric(1) specifying the size of the points. Defaults to 1.25. Some colors
look better if you use 2 for instance.

image_id A character(1) with the name of the image ID you want to use in the back-
ground.

Value

A list with names spe and point_size containing a filtered, ready-to-plot SpatialExperiment
and an appropriate spot size (passed to vis_gene() or vis_clus()), respectively

Author(s)

Nicholas J. Eagles

read10xVisiumAnalysis Load analysis data from a 10x Genomics Visium experiment

Description

This function expands SpatialExperiment::read10xVisium() by reading analysis outputs from
SpaceRanger by 10x Genomics.

Usage

read10xVisiumAnalysis(
samples = "",
sample_id = paste0("sample", sprintf("%02d", seq_along(samples)))

)

Arguments

samples Passed to SpatialExperiment::read10xVisium().

sample_id Passed to SpatialExperiment::read10xVisium().

Details

You might want to use read10xVisiumWrapper() instead of using this function directly.

Value

A named list() with the information about the clustering and the dimension reduction (projec-
tions) from the SpaceRanger output by 10x Genomics.

See Also

Other Utility functions for reading data from SpaceRanger output by 10x Genomics: add10xVisiumAnalysis(),
read10xVisiumWrapper()

42 read10xVisiumWrapper

Examples

See 'Using spatialLIBD with 10x Genomics public datasets' for
a full example using this function.
if (interactive()) {

browseVignettes(package = "spatialLIBD")
}

Note that ?SpatialExperiment::read10xVisium doesn't include all the files
we need to illustrate read10xVisiumWrapper().

read10xVisiumWrapper Load data from a 10x Genomics Visium experiment and make it
spatialLIBD-ready

Description

This function expands SpatialExperiment::read10xVisium() to include analysis results from
SpaceRanger by 10x Genomics as well as add information needed by run_app() to visualize the
data with the spatialLIBD shiny web application.

Usage

read10xVisiumWrapper(
samples = "",
sample_id = paste0("sample", sprintf("%02d", seq_along(samples))),
type = c("HDF5", "sparse"),
data = c("filtered", "raw"),
images = c("lowres", "hires", "detected", "aligned"),
load = TRUE,
reference_gtf = NULL,
chrM = "chrM",
gtf_cols = c("source", "type", "gene_id", "gene_version", "gene_name", "gene_type"),
verbose = TRUE

)

Arguments

samples Passed to SpatialExperiment::read10xVisium().
sample_id Passed to SpatialExperiment::read10xVisium().
type Passed to SpatialExperiment::read10xVisium().
data Passed to SpatialExperiment::read10xVisium().
images Passed to SpatialExperiment::read10xVisium().
load Passed to SpatialExperiment::read10xVisium().
reference_gtf A character(1) specifying the path to the reference genes.gtf file. If not

specified, it will be automatically inferred from the web_summary.html file for
the first samples.

chrM A character(1) specifying the chromosome name of the mitochondrial chro-
mosome. Defaults to chrM.

gtf_cols A character() specifying which columns to keep from the GTF file. "gene_name"
and "gene_id" have to be included in gtf_cols.

verbose A logical(1) specifying whether to show progress updates.

registration_block_cor 43

Value

A SpatialExperiment object with the clustering and dimension reduction (projection) results from
SpaceRanger by 10x Genomics as well as other information used by run_app() for visualzing the
gene expression data.

See Also

Other Utility functions for reading data from SpaceRanger output by 10x Genomics: add10xVisiumAnalysis(),
read10xVisiumAnalysis()

Examples

See 'Using spatialLIBD with 10x Genomics public datasets' for
a full example using this function.
if (interactive()) {

browseVignettes(package = "spatialLIBD")
}

Note that ?SpatialExperiment::read10xVisium doesn't include all the files
we need to illustrate read10xVisiumWrapper().

registration_block_cor

Spatial registration: block correlation

Description

This function computes the block correlation using the sample ID as the blocking factor. This takes
into account that cells in scRNA-seq data or spots in spatially-resolved transcriptomics data from
Visium (or similar) have a sample ID batch effect.

Usage

registration_block_cor(
sce_pseudo,
registration_model,
var_sample_id = "registration_sample_id"

)

Arguments

sce_pseudo The output of registration_pseudobulk().
registration_model

The output from registration_model().

var_sample_id A character(1) specifying the colData(sce_pseudo) variable with the sam-
ple ID.

Value

A numeric(1) with the block correlation at the sample ID level.

44 registration_model

See Also

Other spatial registration and statistical modeling functions: registration_model(), registration_pseudobulk(),
registration_stats_anova(), registration_stats_enrichment(), registration_stats_pairwise(),
registration_wrapper()

Examples

example("registration_model", package = "spatialLIBD")
block_cor <- registration_block_cor(sce_pseudo, registration_mod)

registration_model Spatial registration: model

Description

This function defines the statistical model that will be used for computing the block correlation as
well as pairwise statistics. It is useful to check it in case your sample-level covariates need to be
casted. For example, an integer() variable might have to be casted into a factor() if you wish
to model it as a categorical variable and not a continuous one.

Usage

registration_model(
sce_pseudo,
covars = NULL,
var_registration = "registration_variable"

)

Arguments

sce_pseudo The output of registration_pseudobulk().
covars A character() with names of sample-level covariates.
var_registration

A character(1) specifying the colData(sce_pseudo) variable of interest against
which will be used for computing the relevant statistics.

Value

The output of model.matrix() which you can inspect to verify that your sample-level covariates
are being properly modeled.

See Also

Other spatial registration and statistical modeling functions: registration_block_cor(), registration_pseudobulk(),
registration_stats_anova(), registration_stats_enrichment(), registration_stats_pairwise(),
registration_wrapper()

Examples

example("registration_pseudobulk", package = "spatialLIBD")
registration_mod <- registration_model(sce_pseudo, "age")
head(registration_mod)

registration_pseudobulk 45

registration_pseudobulk

Spatial registration: pseudobulk

Description

Pseudo-bulk the gene expression, filter lowly-expressed genes, and normalize. This is the first step
for spatial registration and for statistical modeling.

Usage

registration_pseudobulk(
sce,
var_registration,
var_sample_id,
covars = NULL,
min_ncells = 10,
pseudobulk_rds_file = NULL,
filter_expr = TRUE,
mito_gene = NULL

)

Arguments

sce A SingleCellExperiment-class object or one that inherits its properties.

var_registration

A character(1) specifying the colData(sce) variable of interest against which
will be used for computing the relevant statistics. This should be a categorical
variable, with all categories syntaticly valid (could be used as an R variable, no
special characters or leading numbers), ex. ’L1.2’, ’celltype2’ not ’L1/2’ or ’2’.

var_sample_id A character(1) specifying the colData(sce) variable with the sample ID.

covars A character() with names of sample-level covariates.

min_ncells An integer(1) greater than 0 specifying the minimum number of cells (for
scRNA-seq) or spots (for spatial) that are combined when pseudo-bulking. Pseudo-
bulked samples with less than min_ncells on sce_pseudo$ncells will be
dropped.

pseudobulk_rds_file

A character(1) specifying the path for saving an RDS file with the pseudo-
bulked object. It’s useful to specify this since pseudo-bulking can take hours to
run on large datasets.

filter_expr A logical(1) specifying whether to filter pseudobulked counts with edgeR::filterByExpr.
Defaults to TRUE, filtering is recommended for spatail registratrion workflow.

mito_gene An optional logical() vector indicating which genes are mitochondrial, used
to calculate pseudo bulked mitochondrial expression rate expr_chrM and pseudo_expr_chrM.
The length has to match the nrow(sce).

46 registration_stats_anova

Value

A pseudo-bulked SingleCellExperiment-class object. The logcounts() assay are log2-CPM values
calculated with edgeR::cpm(log = TRUE). See https://github.com/LieberInstitute/spatialLIBD/
issues/106 and https://support.bioconductor.org/p/9161754 for more details about the
math behind scuttle::logNormFactors(), edgeR::cpm(), and their differences.

See Also

Other spatial registration and statistical modeling functions: registration_block_cor(), registration_model(),
registration_stats_anova(), registration_stats_enrichment(), registration_stats_pairwise(),
registration_wrapper()

Examples

Ensure reproducibility of example data
set.seed(20220907)

Generate example data
sce <- scuttle::mockSCE()

Add some sample IDs
sce$sample_id <- sample(LETTERS[1:5], ncol(sce), replace = TRUE)

Add a sample-level covariate: age
ages <- rnorm(5, mean = 20, sd = 4)
names(ages) <- LETTERS[1:5]
sce$age <- ages[sce$sample_id]

Add gene-level information
rowData(sce)$gene_id <- paste0("ENSG", seq_len(nrow(sce)))
rowData(sce)$gene_name <- paste0("gene", seq_len(nrow(sce)))

Pseudo-bulk by Cell Cycle
sce_pseudo <- registration_pseudobulk(

sce,
var_registration = "Cell_Cycle",
var_sample_id = "sample_id",
covars = c("age"),
min_ncells = NULL

)
colData(sce_pseudo)
rowData(sce_pseudo)

registration_stats_anova

Spatial registration: compute ANOVA statistics

Description

This function computes the gene ANOVA F-statistics (at least one group is different from the rest).
These F-statistics can be used for spatial registration with layer_stat_cor() and related functions.
Although, they are more typically used for identifying ANOVA-marker genes.

https://github.com/LieberInstitute/spatialLIBD/issues/106
https://github.com/LieberInstitute/spatialLIBD/issues/106
https://support.bioconductor.org/p/9161754

registration_stats_anova 47

Usage

registration_stats_anova(
sce_pseudo,
block_cor,
covars = NULL,
var_registration = "registration_variable",
var_sample_id = "registration_sample_id",
gene_ensembl = NULL,
gene_name = NULL,
suffix = ""

)

Arguments

sce_pseudo The output of registration_pseudobulk().

block_cor A numeric(1) computed with registration_block_cor().

covars A character() with names of sample-level covariates.
var_registration

A character(1) specifying the colData(sce_pseudo) variable of interest against
which will be used for computing the relevant statistics.

var_sample_id A character(1) specifying the colData(sce_pseudo) variable with the sam-
ple ID.

gene_ensembl A character(1) specifying the rowData(sce_pseudo) column with the EN-
SEMBL gene IDs. This will be used by layer_stat_cor().

gene_name A character(1) specifying the rowData(sce_pseudo) column with the gene
names (symbols).

suffix A character(1) specifying the suffix to use for the F-statistics column. This is
particularly useful if you will run this function more than once and want to be
able to merge the results.

Value

A data.frame() with the ANOVA statistical results. This is similar to fetch_data("modeling_results")$anova.

See Also

Other spatial registration and statistical modeling functions: registration_block_cor(), registration_model(),
registration_pseudobulk(), registration_stats_enrichment(), registration_stats_pairwise(),
registration_wrapper()

Examples

example("registration_block_cor", package = "spatialLIBD")
results_anova <- registration_stats_anova(sce_pseudo,

block_cor, "age",
gene_ensembl = "ensembl", gene_name = "gene_name", suffix = "example"

)
head(results_anova)

Specifying `block_cor = NaN` then ignores the correlation structure
results_anova_nan <- registration_stats_anova(sce_pseudo,

block_cor = NaN, "age",

48 registration_stats_enrichment

gene_ensembl = "ensembl", gene_name = "gene_name", suffix = "example"
)
head(results_anova_nan)

Note that you can merge multiple of these data.frames if you run this
function for different sets. For example, maybe you drop one group
before pseudo-bulking if you know that there are many differences between
that group and others. For example, we have dropped the white matter (WM)
prior to computing ANOVA F-statistics.

no covariates
results_anova_nocovar <- registration_stats_anova(sce_pseudo,

block_cor,
covars = NULL,
gene_ensembl = "ensembl", gene_name = "gene_name", suffix = "nocovar"

)
head(results_anova_nocovar)

Merge both results into a single data.frame, thanks to having different
'suffix' values.
results_anova_merged <- merge(results_anova, results_anova_nocovar)
head(results_anova_merged)

registration_stats_enrichment

Spatial registration: compute enrichment statistics

Description

This function computes the gene enrichment t-statistics (one group > the rest). These t-statistics are
the ones typically used for spatial registration with layer_stat_cor() and related functions.

Usage

registration_stats_enrichment(
sce_pseudo,
block_cor,
covars = NULL,
var_registration = "registration_variable",
var_sample_id = "registration_sample_id",
gene_ensembl = NULL,
gene_name = NULL

)

Arguments

sce_pseudo The output of registration_pseudobulk().

block_cor A numeric(1) computed with registration_block_cor().

covars A character() with names of sample-level covariates.
var_registration

A character(1) specifying the colData(sce_pseudo) variable of interest against
which will be used for computing the relevant statistics.

registration_stats_pairwise 49

var_sample_id A character(1) specifying the colData(sce_pseudo) variable with the sam-
ple ID.

gene_ensembl A character(1) specifying the rowData(sce_pseudo) column with the EN-
SEMBL gene IDs. This will be used by layer_stat_cor().

gene_name A character(1) specifying the rowData(sce_pseudo) column with the gene
names (symbols).

Value

A data.frame() with the enrichment statistical results. This is similar to fetch_data("modeling_results")$enrichment.

See Also

Other spatial registration and statistical modeling functions: registration_block_cor(), registration_model(),
registration_pseudobulk(), registration_stats_anova(), registration_stats_pairwise(),
registration_wrapper()

Examples

example("registration_block_cor", package = "spatialLIBD")
results_enrichment <- registration_stats_enrichment(sce_pseudo,

block_cor, "age",
gene_ensembl = "ensembl", gene_name = "gene_name"

)
head(results_enrichment)

Specifying `block_cor = NaN` then ignores the correlation structure
results_enrichment_nan <- registration_stats_enrichment(sce_pseudo,

block_cor = NaN, "age",
gene_ensembl = "ensembl", gene_name = "gene_name"

)
head(results_enrichment_nan)

registration_stats_pairwise

Spatial registration: compute pairwise statistics

Description

This function computes the gene pairwise t-statistics (one group > another, for all combinations).
These t-statistics can be used for spatial registration with layer_stat_cor() and related functions.
Although, they are more typically used for identifying pairwise-marker genes.

Usage

registration_stats_pairwise(
sce_pseudo,
registration_model,
block_cor,
var_registration = "registration_variable",
var_sample_id = "registration_sample_id",
gene_ensembl = NULL,
gene_name = NULL

)

50 registration_wrapper

Arguments

sce_pseudo The output of registration_pseudobulk().
registration_model

The output from registration_model().
block_cor A numeric(1) computed with registration_block_cor().
var_registration

A character(1) specifying the colData(sce_pseudo) variable of interest against
which will be used for computing the relevant statistics.

var_sample_id A character(1) specifying the colData(sce_pseudo) variable with the sam-
ple ID.

gene_ensembl A character(1) specifying the rowData(sce_pseudo) column with the EN-
SEMBL gene IDs. This will be used by layer_stat_cor().

gene_name A character(1) specifying the rowData(sce_pseudo) column with the gene
names (symbols).

Value

A data.frame() with the pairwise statistical results. This is similar to fetch_data("modeling_results")$pairwise.

See Also

Other spatial registration and statistical modeling functions: registration_block_cor(), registration_model(),
registration_pseudobulk(), registration_stats_anova(), registration_stats_enrichment(),
registration_wrapper()

Examples

example("registration_block_cor", package = "spatialLIBD")
results_pairwise <- registration_stats_pairwise(sce_pseudo,

registration_mod, block_cor,
gene_ensembl = "ensembl", gene_name = "gene_name"

)
head(results_pairwise)

Specifying `block_cor = NaN` then ignores the correlation structure
results_pairwise_nan <- registration_stats_pairwise(sce_pseudo,

registration_mod,
block_cor = NaN,
gene_ensembl = "ensembl", gene_name = "gene_name"

)
head(results_pairwise_nan)

registration_wrapper Spatial registration: wrapper function

Description

This function is provided for convenience. It runs all the functions required for computing the
modeling_results. This can be useful for finding marker genes on a new spatially-resolved tran-
scriptomics dataset and thus using it for run_app(). The results from this function can also be used
for performing spatial registration through layer_stat_cor() and related functions of sc/snRNA-
seq datasets.

registration_wrapper 51

Usage

registration_wrapper(
sce,
var_registration,
var_sample_id,
covars = NULL,
gene_ensembl = NULL,
gene_name = NULL,
suffix = "",
min_ncells = 10,
pseudobulk_rds_file = NULL

)

Arguments

sce A SingleCellExperiment-class object or one that inherits its properties.
var_registration

A character(1) specifying the colData(sce) variable of interest against which
will be used for computing the relevant statistics. This should be a categorical
variable, with all categories syntaticly valid (could be used as an R variable, no
special characters or leading numbers), ex. ’L1.2’, ’celltype2’ not ’L1/2’ or ’2’.

var_sample_id A character(1) specifying the colData(sce) variable with the sample ID.

covars A character() with names of sample-level covariates.

gene_ensembl A character(1) specifying the rowData(sce_pseudo) column with the EN-
SEMBL gene IDs. This will be used by layer_stat_cor().

gene_name A character(1) specifying the rowData(sce_pseudo) column with the gene
names (symbols).

suffix A character(1) specifying the suffix to use for the F-statistics column. This is
particularly useful if you will run this function more than once and want to be
able to merge the results.

min_ncells An integer(1) greater than 0 specifying the minimum number of cells (for
scRNA-seq) or spots (for spatial) that are combined when pseudo-bulking. Pseudo-
bulked samples with less than min_ncells on sce_pseudo$ncells will be
dropped.

pseudobulk_rds_file

A character(1) specifying the path for saving an RDS file with the pseudo-
bulked object. It’s useful to specify this since pseudo-bulking can take hours to
run on large datasets.

Details

We chose a default of min_ncells = 10 based on OSCA from section 4.3 at http://bioconductor.
org/books/3.15/OSCA.multisample/multi-sample-comparisons.html. They cite https://
doi.org/10.1038/s41467-020-19894-4 as the paper where they came up with the definition of
"very low" being 10. You might want to use registration_pseudobulk() and manually explore
sce_pseudo$ncells to choose the best cutoff.

Value

A list() of data.frame() with the statistical results. This is similar to fetch_data("modeling_results").

http://bioconductor.org/books/3.15/OSCA.multisample/multi-sample-comparisons.html
http://bioconductor.org/books/3.15/OSCA.multisample/multi-sample-comparisons.html
https://doi.org/10.1038/s41467-020-19894-4
https://doi.org/10.1038/s41467-020-19894-4

52 run_app

See Also

Other spatial registration and statistical modeling functions: registration_block_cor(), registration_model(),
registration_pseudobulk(), registration_stats_anova(), registration_stats_enrichment(),
registration_stats_pairwise()

Examples

Ensure reproducibility of example data
set.seed(20220907)

Generate example data
sce <- scuttle::mockSCE()

Add some sample IDs
sce$sample_id <- sample(LETTERS[1:5], ncol(sce), replace = TRUE)

Add a sample-level covariate: age
ages <- rnorm(5, mean = 20, sd = 4)
names(ages) <- LETTERS[1:5]
sce$age <- ages[sce$sample_id]

Add gene-level information
rowData(sce)$ensembl <- paste0("ENSG", seq_len(nrow(sce)))
rowData(sce)$gene_name <- paste0("gene", seq_len(nrow(sce)))

Compute all modeling results
example_modeling_results <- registration_wrapper(

sce,
var_registration = "Cell_Cycle",
var_sample_id = "sample_id",
covars = c("age"),
gene_ensembl = "ensembl",
gene_name = "gene_name",
suffix = "wrapper"

)

Explore the results from registration_wrapper()
class(example_modeling_results)
length(example_modeling_results)
names(example_modeling_results)
lapply(example_modeling_results, head)

run_app Run the spatialLIBD Shiny Application

Description

This function runs the shiny application that allows users to interact with the Visium spatial tran-
scriptomics data from LIBD (by default) or any other data that you have shaped according to our
object structure.

run_app 53

Usage

run_app(
spe = fetch_data(type = "spe"),
sce_layer = fetch_data(type = "sce_layer"),
modeling_results = fetch_data(type = "modeling_results"),
sig_genes = sig_genes_extract_all(n = nrow(sce_layer), modeling_results =
modeling_results, sce_layer = sce_layer),

docs_path = system.file("app", "www", package = "spatialLIBD"),
title = "spatialLIBD",
spe_discrete_vars = c("spatialLIBD", "GraphBased", "ManualAnnotation", "Maynard",
"Martinowich", paste0("SNN_k50_k", 4:28), "SpatialDE_PCA", "SpatialDE_pool_PCA",
"HVG_PCA", "pseudobulk_PCA", "markers_PCA", "SpatialDE_UMAP", "SpatialDE_pool_UMAP",
"HVG_UMAP", "pseudobulk_UMAP", "markers_UMAP", "SpatialDE_PCA_spatial",
"SpatialDE_pool_PCA_spatial", "HVG_PCA_spatial", "pseudobulk_PCA_spatial",

"markers_PCA_spatial", "SpatialDE_UMAP_spatial", "SpatialDE_pool_UMAP_spatial",
"HVG_UMAP_spatial", "pseudobulk_UMAP_spatial",
"markers_UMAP_spatial"),

spe_continuous_vars = c("cell_count", "sum_umi", "sum_gene", "expr_chrM",
"expr_chrM_ratio"),

default_cluster = "spatialLIBD",
auto_crop_default = TRUE,
is_stitched = FALSE,
...

)

Arguments

spe Defaults to the output of fetch_data(type = 'spe'). This is a SpatialExperiment-
class object with the spot-level Visium data and information required for visual-
izing the histology. See fetch_data() for more details.

sce_layer Defaults to the output of fetch_data(type = 'sce_layer'). This is a Single-
CellExperiment object with the spot-level Visium data compressed via pseudo-
bulking to the layer-level (group-level) resolution. See fetch_data() for more
details.

modeling_results

Defaults to the output of fetch_data(type = 'modeling_results'). This is a
list of tables with the columns f_stat_* or t_stat_* as well as p_value_* and
fdr_* plus ensembl. The column name is used to extract the statistic results,
the p-values, and the FDR adjusted p-values. Then the ensembl column is used
for matching in some cases. See fetch_data() for more details. Typically this
is the set of reference statistics used in layer_stat_cor().

sig_genes The output of sig_genes_extract_all() which is a table in long format with
the modeling results. You can subset this if the object requires too much mem-
ory.

docs_path A character(1) specifying the path to the directory containing the website
documentation files. The directory has to contain the files: documentation_sce_layer.md,
documentation_spe.md, favicon.ico, footer.html and README.md.

title A character(1) specifying the title for the app.
spe_discrete_vars

A character() vector of discrete variables that will be available to visualize in
the app. Basically, the set of variables with spot-level groups. They will have to

54 run_app

be present in colData(spe).
spe_continuous_vars

A character() vector of continuous variables that will be available to visual-
ize in the app using the same scale as genes. They will have to be present in
colData(sce).

default_cluster

A character(1) with the name of the main cluster (discrete) variable to use. It
will have to be present in both colData(spe) and colData(sce_layer).

auto_crop_default

A logical(1) specifying the default value for automatically cropping the im-
ages. Set this to FALSE if your images do not follow the Visium grid size expec-
tations, which are key for enabling auto-cropping.

is_stitched A logical(1) vector: If TRUE, expects a SpatialExperiment-class built with
visiumStitched::build_spe(). http://research.libd.org/visiumStitched/
reference/build_spe.html; in particular, expects a logical colData column
exclude_overlapping specifying which spots to exclude from the plot. Sets
auto_crop = FALSE.

... Other arguments passed to the list of golem options for running the application.

Details

If you don’t have the pseudo-bulked analysis results like we computed them in our project https://
doi.org/10.1038/s41593-020-00787-0 you can set sce_layer, modeling_results and sig_genes
to NULL. Doing so will disable the pseudo-bulked portion of the web application. See the examples
for one such case as well as the vignette that describes how you can use spatialLIBD with public
data sets provided by 10x Genomics. That vignette is available at http://research.libd.org/
spatialLIBD/articles/TenX_data_download.html.

Value

A shiny.appobj that contains the input data.

Examples

Not run:
The default arguments will download the data from the web
using fetch_data(). If this is the first time you have run this,
the files will need to be cached by ExperimentHub. Otherwise it
will re-use the files you have previously downloaded.
if (enough_ram(4e9)) {

Obtain the necessary data
if (!exists("spe")) spe <- fetch_data("spe")

Create the interactive website
run_app(spe)

You can also run a custom version without the pseudo-bulked
layer information. This is useful if you are only interested
in the spatial transcriptomics features.
run_app(spe,

sce_layer = NULL, modeling_results = NULL, sig_genes = NULL,
title = "spatialLIBD without layer info"

)

http://research.libd.org/visiumStitched/reference/build_spe.html
http://research.libd.org/visiumStitched/reference/build_spe.html
https://doi.org/10.1038/s41593-020-00787-0
https://doi.org/10.1038/s41593-020-00787-0
http://research.libd.org/spatialLIBD/articles/TenX_data_download.html
http://research.libd.org/spatialLIBD/articles/TenX_data_download.html

run_app 55

When using shinyapps.io aim for less than 3 GB of RAM with your
objects. Check each input object with:
lobstr::obj_size(x)
Do not create the large input objects on the app.R script before
subsetting them. Do this outside app.R since the app.R script is
run at shinyapps.io, so subsetting on that script to reduce the
memory load is pointless. You have to do it outside of app.R.

}

How to run locally the spatialDLPFC Sp09 spatialLIBD app. That is,
from http://research.libd.org/spatialDLPFC/#interactive-websites
how to run https://libd.shinyapps.io/spatialDLPFC_Visium_Sp09 locally.
if (enough_ram(9e9)) {

Download the 3 main objects needed
spe <- fetch_data("spatialDLPFC_Visium")
sce_pseudo <- fetch_data("spatialDLPFC_Visium_pseudobulk")
modeling_results <- fetch_data("spatialDLPFC_Visium_modeling_results")

These are optional commands to further reduce the memory required.
#
Keep only the "lowres" images. Reduces the object from 6.97 GB to 4.59 GB
imgData(spe) <- imgData(spe)[imgData(spe)$image_id == "lowres",]
Drop the regular counts (keep only the logcounts). Reduces the object
from 4.59 GB to 2.45 GB.
counts(spe) <- NULL

For sig_genes_extract_all() to work
sce_pseudo$spatialLIBD <- sce_pseudo$BayesSpace
Compute the significant genes
sig_genes <- sig_genes_extract_all(

n = nrow(sce_pseudo),
modeling_results = modeling_results,
sce_layer = sce_pseudo

)
Reduce the memory from 423.73 MB to 78.88 MB
lobstr::obj_size(sig_genes)
sig_genes$in_rows <- NULL
sig_genes$in_rows_top20 <- NULL
lobstr::obj_size(sig_genes)

Specify the default variable
spe$BayesSpace <- spe$BayesSpace_harmony_09
Get all variables
vars <- colnames(colData(spe))

Set default cluster colors
colors_BayesSpace <- Polychrome::palette36.colors(28)
names(colors_BayesSpace) <- c(1:28)
m <- match(as.character(spe$BayesSpace_harmony_09), names(colors_BayesSpace))
stopifnot(all(!is.na(m)))
spe$BayesSpace_colors <- spe$BayesSpace_harmony_09_colors <- colors_BayesSpace[m]

Download documentation files we use
temp_www <- file.path(tempdir(), "www")
dir.create(temp_www)
download.file(

"https://raw.githubusercontent.com/LieberInstitute/spatialDLPFC/main/README.md",

56 run_app

file.path(temp_www, "README.md")
)
download.file(
"https://raw.githubusercontent.com/LieberInstitute/spatialDLPFC/main/code/deploy_app_k09/www/documentation_sce_layer.md",

file.path(temp_www, "documentation_sce_layer.md")
)
download.file(
"https://raw.githubusercontent.com/LieberInstitute/spatialDLPFC/main/code/deploy_app_k09/www/documentation_spe.md",

file.path(temp_www, "documentation_spe.md")
)
download.file(
"https://raw.githubusercontent.com/LieberInstitute/spatialDLPFC/main/img/favicon.ico",

file.path(temp_www, "favicon.ico")
)
download.file(
"https://raw.githubusercontent.com/LieberInstitute/spatialDLPFC/main/code/deploy_app_k09/www/footer.html",

file.path(temp_www, "footer.html")
)
list.files(temp_www)

Run the app locally
run_app(

spe,
sce_layer = sce_pseudo,
modeling_results = modeling_results,
sig_genes = sig_genes,
title = "spatialDLPFC, Visium, Sp09",

spe_discrete_vars = c(# this is the variables for the spe object not the sce_pseudo object
"BayesSpace",
"ManualAnnotation",
vars[grep("^SpaceRanger_|^scran_", vars)],
vars[grep("^BayesSpace_harmony", vars)],
vars[grep("^BayesSpace_pca", vars)],
"graph_based_PCA_within",
"PCA_SNN_k10_k7",
"Harmony_SNN_k10_k7",
"manual_layer_label",
"wrinkle_type",
"BayesSpace_colors"

),
spe_continuous_vars = c(

"sum_umi",
"sum_gene",
"expr_chrM",
"expr_chrM_ratio",
vars[grep("^VistoSeg_", vars)],
vars[grep("^layer_", vars)],
vars[grep("^broad_", vars)]

),
default_cluster = "BayesSpace",
docs_path = temp_www

)
}
See also:
* https://github.com/LieberInstitute/spatialDLPFC/tree/main/code/deploy_app_k09
* https://github.com/LieberInstitute/spatialDLPFC/tree/main/code/deploy_app_k09_position
* https://github.com/LieberInstitute/spatialDLPFC/tree/main/code/deploy_app_k09_position_noWM

sce_to_spe 57

* https://github.com/LieberInstitute/spatialDLPFC/tree/main/code/deploy_app_k16
* https://github.com/LieberInstitute/spatialDLPFC/tree/main/code/analysis_IF/03_spatialLIBD_app

Example for an object with multiple capture areas stitched together with
<http://research.libd.org/visiumStitched/>.
spe_stitched <- fetch_data("visiumStitched_brain_spe")

Inspect this object
spe_stitched

Notice the use of "exclude_overlapping"
table(spe_stitched$exclude_overlapping, useNA = "ifany")

Run the app with this stitched data
run_app(

spe = spe_stitched,
sce_layer = NULL, modeling_results = NULL, sig_genes = NULL,
title = "visiumStitched example data",
spe_discrete_vars = c("capture_area", "scran_quick_cluster", "ManualAnnotation"),
spe_continuous_vars = c("sum_umi", "sum_gene", "expr_chrM", "expr_chrM_ratio"),
default_cluster = "scran_quick_cluster",
is_stitched = TRUE

)

End(Not run)

sce_to_spe Convert a SCE object to a SPE one

Description

This function converts a spot-level SingleCellExperiment-class (SCE) object as generated by fetch_data()
to a SpatialExperiment-class (SPE) object.

Usage

sce_to_spe(sce = fetch_data("sce"), imageData = NULL)

Arguments

sce Defaults to the output of fetch_data(type = 'sce'). This is a SingleCellEx-
periment object with the spot-level Visium data and information required for
visualizing the histology. See fetch_data() for more details.

imageData A DataFrame() with image data. Will be used with SpatialExperiment::imgData.
If NULL, then this will be constructed for you assuming that you are working with
the original data from spatialLIBD::fetch_data("sce").

Details

Note that the resulting object is a bit more complex than a regular SPE because it contains the data
from the spatialLIBD project which you might otherwise have to generate for your own data.

58 sig_genes_extract

Value

A a SpatialExperiment-class object.

Author(s)

Brenda Pardo, Leonardo Collado-Torres

Examples

if (enough_ram()) {
Download the sce data
sce <- fetch_data("sce")
Transform it to a SpatialExperiment object
spe <- sce_to_spe(sce)

}

sig_genes_extract Extract significant genes

Description

From the layer-level modeling results, this function extracts the top n significant genes. This is the
workhorse function used by sig_genes_extract_all() through which we obtain the information
that can then be used by functions such as layer_boxplot() for constructing informative titles.

Usage

sig_genes_extract(
n = 10,
modeling_results = fetch_data(type = "modeling_results"),
model_type = names(modeling_results)[1],
reverse = FALSE,
sce_layer = fetch_data(type = "sce_layer"),
gene_name = "gene_name"

)

Arguments

n The number of the top ranked genes to extract.
modeling_results

Defaults to the output of fetch_data(type = 'modeling_results'). This is a
list of tables with the columns f_stat_* or t_stat_* as well as p_value_* and
fdr_* plus ensembl. The column name is used to extract the statistic results,
the p-values, and the FDR adjusted p-values. Then the ensembl column is used
for matching in some cases. See fetch_data() for more details. Typically this
is the set of reference statistics used in layer_stat_cor().

model_type A named element of the modeling_results list. By default that is either enrichment
for the model that tests one human brain layer against the rest (one group vs the
rest), pairwise which compares two layers (groups) denoted by layerA-layerB
such that layerA is greater than layerB, and anova which determines if any
layer (group) is different from the rest adjusting for the mean expression level.

sig_genes_extract_all 59

The statistics for enrichment and pairwise are t-statistics while the anova
model ones are F-statistics.

reverse A logical(1) indicating whether to multiply by -1 the input statistics and re-
verse the layerA-layerB column names (using the -) into layerB-layerA.

sce_layer Defaults to the output of fetch_data(type = 'sce_layer'). This is a Single-
CellExperiment object with the spot-level Visium data compressed via pseudo-
bulking to the layer-level (group-level) resolution. See fetch_data() for more
details.

gene_name A character(1) specifying the rowData(sce_layer) column with the gene
names that match the rownames(modeling_results). Defaults to "gene_name".

Value

A data.frame() with the top n significant genes (as ordered by their statistics in decreasing order)
in long format. The specific columns are described further in the vignette.

References

Adapted from https://github.com/LieberInstitute/HumanPilot/blob/master/Analysis/Layer_Guesses/layer_specificity_functions.R

See Also

Other Layer modeling functions: layer_boxplot(), sig_genes_extract_all()

Examples

Obtain the necessary data
if (!exists("modeling_results")) {

modeling_results <- fetch_data(type = "modeling_results")
}
if (!exists("sce_layer")) sce_layer <- fetch_data(type = "sce_layer")

anova top 10 genes
sig_genes_extract(

modeling_results = modeling_results,
sce_layer = sce_layer

)

Extract all genes
sig_genes_extract(

modeling_results = modeling_results,
sce_layer = sce_layer,
n = nrow(sce_layer)

)

sig_genes_extract_all Extract significant genes for all modeling results

Description

This function combines the output of sig_genes_extract() from all the layer-level (group-level)
modeling results and builds the data required for functions such as layer_boxplot().

60 sig_genes_extract_all

Usage

sig_genes_extract_all(
n = 10,
modeling_results = fetch_data(type = "modeling_results"),
sce_layer = fetch_data(type = "sce_layer"),
gene_name = "gene_name"

)

Arguments

n The number of the top ranked genes to extract.

modeling_results

Defaults to the output of fetch_data(type = 'modeling_results'). This is a
list of tables with the columns f_stat_* or t_stat_* as well as p_value_* and
fdr_* plus ensembl. The column name is used to extract the statistic results,
the p-values, and the FDR adjusted p-values. Then the ensembl column is used
for matching in some cases. See fetch_data() for more details. Typically this
is the set of reference statistics used in layer_stat_cor().

sce_layer Defaults to the output of fetch_data(type = 'sce_layer'). This is a Single-
CellExperiment object with the spot-level Visium data compressed via pseudo-
bulking to the layer-level (group-level) resolution. See fetch_data() for more
details.

gene_name A character(1) specifying the rowData(sce_layer) column with the gene
names that match the rownames(modeling_results). Defaults to "gene_name".

Value

A DataFrame-class with the extracted statistics in long format. The specific columns are described
further in the vignette.

See Also

Other Layer modeling functions: layer_boxplot(), sig_genes_extract()

Examples

Obtain the necessary data
if (!exists("modeling_results")) {

modeling_results <- fetch_data(type = "modeling_results")
}
if (!exists("sce_layer")) sce_layer <- fetch_data(type = "sce_layer")

top 10 genes for all models
sig_genes_extract_all(

modeling_results = modeling_results,
sce_layer = sce_layer

)

sort_clusters 61

sort_clusters Sort clusters by frequency

Description

This function takes a vector with cluster labels, recasts it as a factor(), and sorts the factor()
levels by frequency such that the most frequent cluster is the first level and so on.

Usage

sort_clusters(clusters, map_subset = NULL)

Arguments

clusters A vector with cluster labels.

map_subset A logical vector of length equal to clusters specifying which elements of
clusters to use to determine the ranking of the clusters.

Value

A factor() version of clusters where the levels are ordered by frequency.

Examples

Build an initial set of cluster labels
clus <- letters[unlist(lapply(4:1, function(x) rep(x, x)))]

In this case, it's a character vector
class(clus)

We see that we have 10 elements in this vector, which is
an unnamed character vector
clus

letter 'd' is the most frequent
table(clus)

Sort them and obtain a factor. Notice that it's a named
factor, and the names correspond to the original values
in the character vector.
sort_clusters(clus)

Since 'd' was the most frequent, it gets assigned to the first level
in the factor variable.
table(sort_clusters(clus))

If we skip the first 3 values of clus (which are all 'd'), we can
change the most frequent cluster. And thus the ordering of the
factor levels.
sort_clusters(clus, map_subset = seq_len(length(clus)) > 3)

Let's try with a factor variable
clus_factor <- factor(clus)
sort_clusters() returns an identical result in this case

62 tstats_Human_DLPFC_snRNAseq_Nguyen_topLayer

stopifnot(identical(sort_clusters(clus), sort_clusters(clus_factor)))

What happens if you have a logical variable with NAs?
set.seed(20240712)
log_var <- sample(c(TRUE, FALSE, NA),

1000,
replace = TRUE,
prob = c(0.3, 0.15, 0.55)

)
Here, the NAs are the most frequent group.
table(log_var, useNA = "ifany")

The NAs are not used for sorting. Since we have more 'TRUE' than 'FALSE'
then, 'TRUE' becomes the first level.
table(sort_clusters(log_var), useNA = "ifany")

tstats_Human_DLPFC_snRNAseq_Nguyen_topLayer

Cell cluster t-statistics from Tran et al

Description

Using the DLPFC snRNA-seq data from Matthew N Tran et al https://doi.org/10.1016/j.
neuron.2021.09.001 we computed enrichment t-statistics for the cell clusters. The Tran et al data
has been subset to the top 100 DLPFC layer markers found in Maynard, Collado-Torres, et al 2021.
This data is used in examples such as in layer_stat_cor_plot(). The Tran et al data is from the
pre-print version of that project.

Usage

tstats_Human_DLPFC_snRNAseq_Nguyen_topLayer

Format

A matrix with 692 rows and 31 variables where each column is a given cell cluster from Tran et al
and each row is one gene. The row names are Ensembl gene IDs which are used by layer_stat_cor()
to match to our modeling results.

Source

https://github.com/LieberInstitute/HumanPilot/blob/master/Analysis/Layer_Guesses/
dlpfc_snRNAseq_annotation.R and https://github.com/LieberInstitute/spatialLIBD/blob/
master/dev/02_dev.R#L107-L194.

https://doi.org/10.1016/j.neuron.2021.09.001
https://doi.org/10.1016/j.neuron.2021.09.001
https://github.com/LieberInstitute/HumanPilot/blob/master/Analysis/Layer_Guesses/dlpfc_snRNAseq_annotation.R
https://github.com/LieberInstitute/HumanPilot/blob/master/Analysis/Layer_Guesses/dlpfc_snRNAseq_annotation.R
https://github.com/LieberInstitute/spatialLIBD/blob/master/dev/02_dev.R#L107-L194
https://github.com/LieberInstitute/spatialLIBD/blob/master/dev/02_dev.R#L107-L194

vis_clus 63

vis_clus Sample spatial cluster visualization

Description

This function visualizes the clusters for one given sample at the spot-level using (by default) the
histology information on the background. To visualize gene-level (or any continuous variable) use
vis_gene().

Usage

vis_clus(
spe,
sampleid = unique(spe$sample_id)[1],
clustervar,
colors = c("#b2df8a", "#e41a1c", "#377eb8", "#4daf4a", "#ff7f00", "gold", "#a65628",

"#999999", "black", "grey", "white", "purple"),
spatial = TRUE,
image_id = "lowres",
alpha = NA,
point_size = 2,
auto_crop = TRUE,
na_color = "#CCCCCC40",
is_stitched = FALSE,
guide_point_size = point_size,
...

)

Arguments

spe A SpatialExperiment-class object. See fetch_data() for how to download
some example objects or read10xVisiumWrapper() to read in spaceranger
--count output files and build your own spe object.

sampleid A character(1) specifying which sample to plot from colData(spe)$sample_id
(formerly colData(spe)$sample_name).

clustervar A character(1) with the name of the colData(spe) column that has the clus-
ter values.

colors A vector of colors to use for visualizing the clusters from clustervar. If the
vector has names, then those should match the values of clustervar.

spatial A logical(1) indicating whether to include the histology layer from geom_spatial().
If you plan to use ggplotly() then it’s best to set this to FALSE.

image_id A character(1) with the name of the image ID you want to use in the back-
ground.

alpha A numeric(1) in the [0, 1] range that specifies the transparency level of the
data on the spots.

point_size A numeric(1) specifying the size of the points. Defaults to 1.25. Some colors
look better if you use 2 for instance.

64 vis_clus

auto_crop A logical(1) indicating whether to automatically crop the image / plotting
area, which is useful if the Visium capture area is not centered on the image and
if the image is not a square.

na_color A character(1) specifying a color for the NA values. If you set alpha = NA
then it’s best to set na_color to a color that has alpha blending already, which
will make non-NA values pop up more and the NA values will show with a
lighter color. This behavior is lost when alpha is set to a non-NA value.

is_stitched A logical(1) vector: If TRUE, expects a SpatialExperiment-class built with
visiumStitched::build_spe(). http://research.libd.org/visiumStitched/
reference/build_spe.html; in particular, expects a logical colData column
exclude_overlapping specifying which spots to exclude from the plot. Sets
auto_crop = FALSE.

guide_point_size

A numeric(1) specifying the size of the points in guide. Defaults to point_size.
Increase to improve visability.

... Passed to paste0() for making the title of the plot following the sampleid.

Details

This function subsets spe to the given sample and prepares the data and title for vis_clus_p().

Value

A ggplot2 object.

See Also

Other Spatial cluster visualization functions: frame_limits(), vis_clus_p(), vis_grid_clus(),
vis_image()

Examples

if (enough_ram()) {
Obtain the necessary data
if (!exists("spe")) spe <- fetch_data("spe")

Check the colors defined by Lukas M Weber
libd_layer_colors

Use the manual color palette by Lukas M Weber
p1 <- vis_clus(

spe = spe,
clustervar = "layer_guess_reordered",
sampleid = "151673",
colors = libd_layer_colors,
... = " LIBD Layers"

)
print(p1)

Without auto-cropping the image
p2 <- vis_clus(

spe = spe,
clustervar = "layer_guess_reordered",
sampleid = "151673",

http://research.libd.org/visiumStitched/reference/build_spe.html
http://research.libd.org/visiumStitched/reference/build_spe.html

vis_clus_p 65

colors = libd_layer_colors,
auto_crop = FALSE,
... = " LIBD Layers"

)
print(p2)

Without histology
p3 <- vis_clus(

spe = spe,
clustervar = "layer_guess_reordered",
sampleid = "151673",
colors = libd_layer_colors,
... = " LIBD Layers",
spatial = FALSE

)
print(p3)

With some NA values
spe$tmp <- spe$layer_guess_reordered
spe$tmp[spe$sample_id == "151673"][seq_len(500)] <- NA
p4 <- vis_clus(

spe = spe,
clustervar = "tmp",
sampleid = "151673",
colors = libd_layer_colors,
na_color = "white",
... = " LIBD Layers"

)
print(p4)

edit plot point size but keep guide size larger
p5 <- vis_clus(

spe = spe,
clustervar = "layer_guess_reordered",
sampleid = "151673",
colors = libd_layer_colors,
na_color = "white",
point_size = 1,
guide_point_size = 3,
... = " LIBD Layers"

)
print(p5)

}

vis_clus_p Sample spatial cluster visualization workhorse function

Description

This function visualizes the clusters for one given sample at the spot-level using (by default) the
histology information on the background. This is the function that does all the plotting behind
vis_clus(). To visualize gene-level (or any continuous variable) use vis_gene_p().

66 vis_clus_p

Usage

vis_clus_p(
spe,
d,
clustervar,
sampleid = unique(spe$sample_id)[1],
colors,
spatial,
title,
image_id = "lowres",
alpha = NA,
point_size = 2,
auto_crop = TRUE,
na_color = "#CCCCCC40"

)

Arguments

spe A SpatialExperiment-class object. See fetch_data() for how to download
some example objects or read10xVisiumWrapper() to read in spaceranger
--count output files and build your own spe object.

d A data.frame() with the sample-level information. This is typically obtained
using cbind(colData(spe), spatialCoords(spe)).

clustervar A character(1) with the name of the colData(spe) column that has the clus-
ter values.

sampleid A character(1) specifying which sample to plot from colData(spe)$sample_id
(formerly colData(spe)$sample_name).

colors A vector of colors to use for visualizing the clusters from clustervar. If the
vector has names, then those should match the values of clustervar.

spatial A logical(1) indicating whether to include the histology layer from geom_spatial().
If you plan to use ggplotly() then it’s best to set this to FALSE.

title The title for the plot.

image_id A character(1) with the name of the image ID you want to use in the back-
ground.

alpha A numeric(1) in the [0, 1] range that specifies the transparency level of the
data on the spots.

point_size A numeric(1) specifying the size of the points. Defaults to 1.25. Some colors
look better if you use 2 for instance.

auto_crop A logical(1) indicating whether to automatically crop the image / plotting
area, which is useful if the Visium capture area is not centered on the image and
if the image is not a square.

na_color A character(1) specifying a color for the NA values. If you set alpha = NA
then it’s best to set na_color to a color that has alpha blending already, which
will make non-NA values pop up more and the NA values will show with a
lighter color. This behavior is lost when alpha is set to a non-NA value.

Value

A ggplot2 object.

vis_gene 67

See Also

Other Spatial cluster visualization functions: frame_limits(), vis_clus(), vis_grid_clus(),
vis_image()

Examples

if (enough_ram()) {
Obtain the necessary data
if (!exists("spe")) spe <- fetch_data("spe")
spe_sub <- spe[, spe$sample_id == "151673"]

Use the manual color palette by Lukas M Weber
Don't plot the histology information
p <- vis_clus_p(

spe = spe_sub,
d = as.data.frame(cbind(colData(spe_sub), SpatialExperiment::spatialCoords(spe_sub)), optional = TRUE),

clustervar = "layer_guess_reordered",
sampleid = "151673",
colors = libd_layer_colors,
title = "151673 LIBD Layers",
spatial = FALSE

)
print(p)

Clean up
rm(spe_sub)

}

vis_gene Sample spatial gene visualization

Description

This function visualizes the gene expression stored in assays(spe) or any continuous variable
stored in colData(spe) for one given sample at the spot-level using (by default) the histology
information on the background. To visualize clusters (or any discrete variable) use vis_clus().

Usage

vis_gene(
spe,
sampleid = unique(spe$sample_id)[1],
geneid = rowData(spe)$gene_search[1],
spatial = TRUE,
assayname = "logcounts",
minCount = 0,
viridis = TRUE,
image_id = "lowres",
alpha = NA,
cont_colors = if (viridis) viridisLite::viridis(21) else c("aquamarine4",
"springgreen", "goldenrod", "red"),

point_size = 2,

68 vis_gene

auto_crop = TRUE,
na_color = "#CCCCCC40",
multi_gene_method = c("z_score", "pca", "sparsity"),
is_stitched = FALSE,
cap_percentile = 1,
...

)

Arguments

spe A SpatialExperiment-class object. See fetch_data() for how to download
some example objects or read10xVisiumWrapper() to read in spaceranger
--count output files and build your own spe object.

sampleid A character(1) specifying which sample to plot from colData(spe)$sample_id
(formerly colData(spe)$sample_name).

geneid A character() specifying the gene ID(s) stored in rowData(spe)$gene_search
or a continuous variable(s) stored in colData(spe) to visualize. For each ID, if
rowData(spe)$gene_search is missing, then rownames(spe) is used to search
for the gene ID. When a vector of length > 1 is supplied, the continuous vari-
ables are combined according to multi_gene_method, producing a single value
for each spot.

spatial A logical(1) indicating whether to include the histology layer from geom_spatial().
If you plan to use ggplotly() then it’s best to set this to FALSE.

assayname The name of the assays(spe) to use for extracting the gene expression data.
Defaults to logcounts.

minCount A numeric(1) specifying the minimum gene expression (or value in the contin-
uous variable) to visualize. Values at or below this threshold will be set to NA.
Defaults to 0.

viridis A logical(1) whether to use the color-blind friendly palette from viridis or
the color palette used in the paper that was chosen for contrast when visualizing
the data on top of the histology image. One issue is being able to differentiate
low values from NA ones due to the purple-ish histology information that is
dependent on cell density.

image_id A character(1) with the name of the image ID you want to use in the back-
ground.

alpha A numeric(1) in the [0, 1] range that specifies the transparency level of the
data on the spots.

cont_colors A character() vector of colors that supersedes the viridis argument.

point_size A numeric(1) specifying the size of the points. Defaults to 1.25. Some colors
look better if you use 2 for instance.

auto_crop A logical(1) indicating whether to automatically crop the image / plotting
area, which is useful if the Visium capture area is not centered on the image and
if the image is not a square.

na_color A character(1) specifying a color for the NA values. If you set alpha = NA
then it’s best to set na_color to a color that has alpha blending already, which
will make non-NA values pop up more and the NA values will show with a
lighter color. This behavior is lost when alpha is set to a non-NA value.

vis_gene 69

multi_gene_method

A character(1): either "pca", "sparsity", or "z_score". This parameter
controls how multiple continuous variables are combined for visualization, and
only applies when geneid has length great than 1. z_score: to summarize mul-
tiple continuous variables, each is normalized to represent a Z-score. The mul-
tiple scores are then averaged. pca: PCA dimension reduction is conducted on
the matrix formed by the continuous variables, and the first PC is then used and
multiplied by -1 if needed to have the majority of the values for PC1 to be pos-
itive. sparsity: the proportion of continuous variables with positive values for
each spot is computed. For more details, check the multi gene vignette at https:
//research.libd.org/spatialLIBD/articles/multi_gene_plots.html.

is_stitched A logical(1) vector: If TRUE, expects a SpatialExperiment-class built with
visiumStitched::build_spe(). http://research.libd.org/visiumStitched/
reference/build_spe.html; in particular, expects a logical colData column
exclude_overlapping specifying which spots to exclude from the plot. Sets
auto_crop = FALSE.

cap_percentile A numeric(1) in (0, 1] determining the maximum percentile (as a proportion)
at which to cap expression. For example, a value of 0.95 sets the top 5% of
expression values to the 95th percentile value. This can help make the color scale
more dynamic in the presence of high outliers. Defaults to 1, which effectively
performs no capping.

... Passed to paste0() for making the title of the plot following the sampleid.

Details

This function subsets spe to the given sample and prepares the data and title for vis_gene_p(). It
also adds a caption to the plot.

Value

A ggplot2 object.

See Also

Other Spatial gene visualization functions: vis_gene_p(), vis_grid_gene()

Examples

if (enough_ram()) {
Obtain the necessary data
if (!exists("spe")) spe <- fetch_data("spe")

Valid `geneid` values are those in
head(rowData(spe)$gene_search)
or continuous variables stored in colData(spe)
or rownames(spe)

Visualize a default gene on the non-viridis scale
p1 <- vis_gene(

spe = spe,
sampleid = "151507",
viridis = FALSE

)
print(p1)

https://research.libd.org/spatialLIBD/articles/multi_gene_plots.html
https://research.libd.org/spatialLIBD/articles/multi_gene_plots.html
http://research.libd.org/visiumStitched/reference/build_spe.html
http://research.libd.org/visiumStitched/reference/build_spe.html

70 vis_gene

Use a custom set of colors in the reverse order than usual
p2 <- vis_gene(

spe = spe,
sampleid = "151507",
cont_colors = rev(viridisLite::viridis(21, option = "magma"))

)
print(p2)

Turn the alpha to 1, which makes the NA values have a full alpha
p2b <- vis_gene(

spe = spe,
sampleid = "151507",
cont_colors = rev(viridisLite::viridis(21, option = "magma")),
alpha = 1

)
print(p2b)

Turn the alpha to NA, and use an alpha-blended "forestgreen" for
the NA values

https://gist.githubusercontent.com/mages/5339689/raw/2aaa482dfbbecbfcb726525a3d81661f9d802a8e/add.alpha.R
add.alpha("forestgreen", 0.5)
p2c <- vis_gene(

spe = spe,
sampleid = "151507",
cont_colors = rev(viridisLite::viridis(21, option = "magma")),
alpha = NA,
na_color = "#228B2280"

)
print(p2c)

Visualize a continuous variable, in this case, the ratio of chrM
gene expression compared to the total expression at the spot-level
p3 <- vis_gene(

spe = spe,
sampleid = "151507",
geneid = "expr_chrM_ratio"

)
print(p3)

Visualize a gene using the rownames(spe)
p4 <- vis_gene(

spe = spe,
sampleid = "151507",
geneid = rownames(spe)[which(rowData(spe)$gene_name == "MOBP")]

)
print(p4)

Repeat without auto-cropping the image
p5 <- vis_gene(

spe = spe,
sampleid = "151507",
geneid = rownames(spe)[which(rowData(spe)$gene_name == "MOBP")],
auto_crop = FALSE

)
print(p5)

vis_gene_p 71

Define several markers for white matter
white_matter_genes <- c(

"ENSG00000197971", "ENSG00000131095", "ENSG00000123560",
"ENSG00000171885"

)

Plot all white matter markers at once using the Z-score combination
method. Flatten this quantity at the top 5% of values for plotting
p6 <- vis_gene(

spe = spe,
sampleid = "151507",
geneid = white_matter_genes,
multi_gene_method = "z_score",
cap_percentile = 0.95

)
print(p6)

Plot all white matter markers at once using the sparsity combination
method
p7 <- vis_gene(

spe = spe,
sampleid = "151507",
geneid = white_matter_genes,
multi_gene_method = "sparsity"

)
print(p7)

Plot all white matter markers at once using the PCA combination
method
p8 <- vis_gene(

spe = spe,
sampleid = "151507",
geneid = white_matter_genes,
multi_gene_method = "pca"

)
print(p8)

}

vis_gene_p Sample spatial gene visualization workhorse function

Description

This function visualizes the gene expression stored in assays(spe) or any continuous variable
stored in colData(spe) for one given sample at the spot-level using (by default) the histology
information on the background. This is the function that does all the plotting behind vis_gene()
To visualize clusters (or any discrete variable) use vis_clus_p().

Usage

vis_gene_p(
spe,
d,
sampleid = unique(spe$sample_id)[1],

72 vis_gene_p

spatial,
title,
viridis = TRUE,
image_id = "lowres",
alpha = NA,
cont_colors = if (viridis) viridisLite::viridis(21) else c("aquamarine4",
"springgreen", "goldenrod", "red"),

point_size = 2,
auto_crop = TRUE,
na_color = "#CCCCCC40",
legend_title = ""

)

Arguments

spe A SpatialExperiment-class object. See fetch_data() for how to download
some example objects or read10xVisiumWrapper() to read in spaceranger
--count output files and build your own spe object.

d A data.frame() with the sample-level information. This is typically obtained
using cbind(colData(spe), spatialCoords(spe)). The data.frame has to
contain a column with the continuous variable data to plot stored under d$COUNT.

sampleid A character(1) specifying which sample to plot from colData(spe)$sample_id
(formerly colData(spe)$sample_name).

spatial A logical(1) indicating whether to include the histology layer from geom_spatial().
If you plan to use ggplotly() then it’s best to set this to FALSE.

title The title for the plot.

viridis A logical(1) whether to use the color-blind friendly palette from viridis or
the color palette used in the paper that was chosen for contrast when visualizing
the data on top of the histology image. One issue is being able to differentiate
low values from NA ones due to the purple-ish histology information that is
dependent on cell density.

image_id A character(1) with the name of the image ID you want to use in the back-
ground.

alpha A numeric(1) in the [0, 1] range that specifies the transparency level of the
data on the spots.

cont_colors A character() vector of colors that supersedes the viridis argument.

point_size A numeric(1) specifying the size of the points. Defaults to 1.25. Some colors
look better if you use 2 for instance.

auto_crop A logical(1) indicating whether to automatically crop the image / plotting
area, which is useful if the Visium capture area is not centered on the image and
if the image is not a square.

na_color A character(1) specifying a color for the NA values. If you set alpha = NA
then it’s best to set na_color to a color that has alpha blending already, which
will make non-NA values pop up more and the NA values will show with a
lighter color. This behavior is lost when alpha is set to a non-NA value.

legend_title A character(1) specifying the legend title.

Value

A ggplot2 object.

vis_grid_clus 73

See Also

Other Spatial gene visualization functions: vis_gene(), vis_grid_gene()

Examples

if (enough_ram()) {
Obtain the necessary data
if (!exists("spe")) spe <- fetch_data("spe")

Prepare the data for the plotting function
spe_sub <- spe[, spe$sample_id == "151673"]

df <- as.data.frame(cbind(colData(spe_sub), SpatialExperiment::spatialCoords(spe_sub)), optional = TRUE)
df$COUNT <- df$expr_chrM_ratio

Don't plot the histology information
p <- vis_gene_p(

spe = spe_sub,
d = df,
sampleid = "151673",
title = "151673 chrM expr ratio",
spatial = FALSE

)
print(p)

Clean up
rm(spe_sub)

}

vis_grid_clus Sample spatial cluster visualization grid

Description

This function visualizes the clusters for a set of samples at the spot-level using (by default) the
histology information on the background. To visualize gene-level (or any continuous variable) use
vis_grid_gene().

Usage

vis_grid_clus(
spe,
clustervar,
pdf_file,
sort_clust = TRUE,
colors = NULL,
return_plots = FALSE,
spatial = TRUE,
height = 24,
width = 36,
image_id = "lowres",
alpha = NA,
sample_order = unique(spe$sample_id),

74 vis_grid_clus

point_size = 2,
auto_crop = TRUE,
na_color = "#CCCCCC40",
is_stitched = FALSE,
guide_point_size = point_size,
...

)

Arguments

spe A SpatialExperiment-class object. See fetch_data() for how to download
some example objects or read10xVisiumWrapper() to read in spaceranger
--count output files and build your own spe object.

clustervar A character(1) with the name of the colData(spe) column that has the clus-
ter values.

pdf_file A character(1) specifying the path for the resulting PDF.
sort_clust A logical(1) indicating whether you want to sort the clusters by frequency

using sort_clusters().
colors A vector of colors to use for visualizing the clusters from clustervar. If the

vector has names, then those should match the values of clustervar.
return_plots A logical(1) indicating whether to print the plots to a PDF or to return the list

of plots that you can then print using plot_grid.
spatial A logical(1) indicating whether to include the histology layer from geom_spatial().

If you plan to use ggplotly() then it’s best to set this to FALSE.
height A numeric(1) passed to pdf.
width A numeric(1) passed to pdf.
image_id A character(1) with the name of the image ID you want to use in the back-

ground.
alpha A numeric(1) in the [0, 1] range that specifies the transparency level of the

data on the spots.
sample_order A character() with the names of the samples to use and their order.
point_size A numeric(1) specifying the size of the points. Defaults to 1.25. Some colors

look better if you use 2 for instance.
auto_crop A logical(1) indicating whether to automatically crop the image / plotting

area, which is useful if the Visium capture area is not centered on the image and
if the image is not a square.

na_color A character(1) specifying a color for the NA values. If you set alpha = NA
then it’s best to set na_color to a color that has alpha blending already, which
will make non-NA values pop up more and the NA values will show with a
lighter color. This behavior is lost when alpha is set to a non-NA value.

is_stitched A logical(1) vector: If TRUE, expects a SpatialExperiment-class built with
visiumStitched::build_spe(). http://research.libd.org/visiumStitched/
reference/build_spe.html; in particular, expects a logical colData column
exclude_overlapping specifying which spots to exclude from the plot. Sets
auto_crop = FALSE.

guide_point_size

A numeric(1) specifying the size of the points in guide. Defaults to point_size.
Increase to improve visability.

... Passed to paste0() for making the title of the plot following the sampleid.

http://research.libd.org/visiumStitched/reference/build_spe.html
http://research.libd.org/visiumStitched/reference/build_spe.html

vis_grid_gene 75

Details

This function prepares the data and then loops through vis_clus() for computing the list of ggplot2
objects.

Value

A list of ggplot2 objects.

See Also

Other Spatial cluster visualization functions: frame_limits(), vis_clus(), vis_clus_p(), vis_image()

Examples

if (enough_ram()) {
Obtain the necessary data
if (!exists("spe")) spe <- fetch_data("spe")

Subset to two samples of interest and obtain the plot list
p_list <-

vis_grid_clus(
spe[, spe$sample_id %in% c("151673", "151674")],
"layer_guess_reordered",
spatial = FALSE,
return_plots = TRUE,
sort_clust = FALSE,
colors = libd_layer_colors

)

Visualize the spatial adjacent replicates for position = 0 micro meters
for subject 3
cowplot::plot_grid(plotlist = p_list, ncol = 2)

}

vis_grid_gene Sample spatial gene visualization grid

Description

This function visualizes the gene expression stored in assays(spe) or any continuous variable
stored in colData(spe) for a set of samples at the spot-level using (by default) the histology infor-
mation on the background. To visualize clusters (or any discrete variable) use vis_grid_clus().

Usage

vis_grid_gene(
spe,
geneid = rowData(spe)$gene_search[1],
pdf_file,
assayname = "logcounts",
minCount = 0,
return_plots = FALSE,
spatial = TRUE,

76 vis_grid_gene

viridis = TRUE,
height = 24,
width = 36,
image_id = "lowres",
alpha = NA,
cont_colors = if (viridis) viridisLite::viridis(21) else c("aquamarine4",
"springgreen", "goldenrod", "red"),

sample_order = unique(spe$sample_id),
point_size = 2,
auto_crop = TRUE,
na_color = "#CCCCCC40",
is_stitched = FALSE,
cap_percentile = 1,
...

)

Arguments

spe A SpatialExperiment-class object. See fetch_data() for how to download
some example objects or read10xVisiumWrapper() to read in spaceranger
--count output files and build your own spe object.

geneid A character() specifying the gene ID(s) stored in rowData(spe)$gene_search
or a continuous variable(s) stored in colData(spe) to visualize. For each ID, if
rowData(spe)$gene_search is missing, then rownames(spe) is used to search
for the gene ID. When a vector of length > 1 is supplied, the continuous vari-
ables are combined according to multi_gene_method, producing a single value
for each spot.

pdf_file A character(1) specifying the path for the resulting PDF.

assayname The name of the assays(spe) to use for extracting the gene expression data.
Defaults to logcounts.

minCount A numeric(1) specifying the minimum gene expression (or value in the contin-
uous variable) to visualize. Values at or below this threshold will be set to NA.
Defaults to 0.

return_plots A logical(1) indicating whether to print the plots to a PDF or to return the list
of plots that you can then print using plot_grid.

spatial A logical(1) indicating whether to include the histology layer from geom_spatial().
If you plan to use ggplotly() then it’s best to set this to FALSE.

viridis A logical(1) whether to use the color-blind friendly palette from viridis or
the color palette used in the paper that was chosen for contrast when visualizing
the data on top of the histology image. One issue is being able to differentiate
low values from NA ones due to the purple-ish histology information that is
dependent on cell density.

height A numeric(1) passed to pdf.

width A numeric(1) passed to pdf.

image_id A character(1) with the name of the image ID you want to use in the back-
ground.

alpha A numeric(1) in the [0, 1] range that specifies the transparency level of the
data on the spots.

cont_colors A character() vector of colors that supersedes the viridis argument.

vis_grid_gene 77

sample_order A character() with the names of the samples to use and their order.
point_size A numeric(1) specifying the size of the points. Defaults to 1.25. Some colors

look better if you use 2 for instance.
auto_crop A logical(1) indicating whether to automatically crop the image / plotting

area, which is useful if the Visium capture area is not centered on the image and
if the image is not a square.

na_color A character(1) specifying a color for the NA values. If you set alpha = NA
then it’s best to set na_color to a color that has alpha blending already, which
will make non-NA values pop up more and the NA values will show with a
lighter color. This behavior is lost when alpha is set to a non-NA value.

is_stitched A logical(1) vector: If TRUE, expects a SpatialExperiment-class built with
visiumStitched::build_spe(). http://research.libd.org/visiumStitched/
reference/build_spe.html; in particular, expects a logical colData column
exclude_overlapping specifying which spots to exclude from the plot. Sets
auto_crop = FALSE.

cap_percentile A numeric(1) in (0, 1] determining the maximum percentile (as a proportion)
at which to cap expression. For example, a value of 0.95 sets the top 5% of
expression values to the 95th percentile value. This can help make the color scale
more dynamic in the presence of high outliers. Defaults to 1, which effectively
performs no capping.

... Passed to paste0() for making the title of the plot following the sampleid.

Details

This function prepares the data and then loops through vis_gene() for computing the list of ggplot2
objects.

Value

A list of ggplot2 objects.

See Also

Other Spatial gene visualization functions: vis_gene(), vis_gene_p()

Examples

if (enough_ram()) {
Obtain the necessary data
if (!exists("spe")) spe <- fetch_data("spe")

Subset to two samples of interest and obtain the plot list
p_list <-

vis_grid_gene(
spe[, spe$sample_id %in% c("151673", "151674")],
spatial = FALSE,
return_plots = TRUE

)

Visualize the spatial adjacent replicates for position = 0 micro meters
for subject 3
cowplot::plot_grid(plotlist = p_list, ncol = 2)

}

http://research.libd.org/visiumStitched/reference/build_spe.html
http://research.libd.org/visiumStitched/reference/build_spe.html

78 vis_image

vis_image Sample image visualization

Description

This function visualizes the histology image for selected sample. Matches crop and settings of
vis_clus() and vis_gene().

Usage

vis_image(
spe,
sampleid = unique(spe$sample_id)[1],
image_id = "lowres",
auto_crop = TRUE,
is_stitched = FALSE,
title_suffix = NULL

)

Arguments

spe A SpatialExperiment-class object. See fetch_data() for how to download
some example objects or read10xVisiumWrapper() to read in spaceranger
--count output files and build your own spe object.

sampleid A character(1) specifying which sample to plot from colData(spe)$sample_id
(formerly colData(spe)$sample_name).

image_id A character(1) with the name of the image ID you want to use in the back-
ground.

auto_crop A logical(1) indicating whether to automatically crop the image / plotting
area, which is useful if the Visium capture area is not centered on the image and
if the image is not a square.

is_stitched A logical(1) vector: If TRUE, expects a SpatialExperiment-class built with
visiumStitched::build_spe(). http://research.libd.org/visiumStitched/
reference/build_spe.html; in particular, expects a logical colData column
exclude_overlapping specifying which spots to exclude from the plot. Sets
auto_crop = FALSE.

title_suffix A character(1) passed to paste() to modify the title of the plot following the
sampleid.

Details

This function subsets spe to the given sample and prepares the data and title for vis_clus_p().

Value

A ggplot2 object.

See Also

Other Spatial cluster visualization functions: frame_limits(), vis_clus(), vis_clus_p(), vis_grid_clus()

http://research.libd.org/visiumStitched/reference/build_spe.html
http://research.libd.org/visiumStitched/reference/build_spe.html

vis_image 79

Examples

if (enough_ram()) {
Obtain the necessary data
if (!exists("spe")) spe <- fetch_data("spe")

Print the "lowres" image for sample 151673
p1 <- vis_image(
spe = spe,
sampleid = "151673"

)
print(p1)

Without auto-cropping the image
p2 <- vis_image(

spe = spe,
sampleid = "151673",
auto_crop = FALSE

)
print(p2)

}

Index

∗ Check input functions
check_modeling_results, 10
check_sce, 11
check_sce_layer, 12
check_spe, 13

∗ Functions for adding non-standard images
add_images, 5
locate_images, 38

∗ Gene set enrichment functions
gene_set_enrichment, 19
gene_set_enrichment_plot, 21

∗ Genomics
add10xVisiumAnalysis, 4
read10xVisiumAnalysis, 41
read10xVisiumWrapper, 42

∗ Image editing functions
img_edit, 27
img_update, 29
img_update_all, 30

∗ Layer correlation functions
annotate_registered_clusters, 9
layer_stat_cor, 33
layer_stat_cor_plot, 35

∗ Layer modeling functions
layer_boxplot, 31
sig_genes_extract, 58
sig_genes_extract_all, 59

∗ Spatial cluster visualization functions
frame_limits, 18
vis_clus, 63
vis_clus_p, 65
vis_grid_clus, 73
vis_image, 78

∗ Spatial gene visualization functions
vis_gene, 67
vis_gene_p, 71
vis_grid_gene, 75

∗ SpatialExperiment-related functions
sce_to_spe, 57

∗ Utility functions for reading data from
SpaceRanger output by 10x

add10xVisiumAnalysis, 4
read10xVisiumAnalysis, 41

read10xVisiumWrapper, 42
∗ cluster export/import utility functions

cluster_export, 14
cluster_import, 15

∗ datasets
libd_layer_colors, 38
tstats_Human_DLPFC_snRNAseq_Nguyen_topLayer,

62
∗ functions for summarizing expression of

multiple continuous variables
simultaneously

multi_gene_pca, 39
multi_gene_sparsity, 39
multi_gene_z_score, 40

∗ internal
multi_gene_pca, 39
multi_gene_sparsity, 39
multi_gene_z_score, 40
prep_stitched_data, 40
spatialLIBD-package, 3

∗ spatial registration and statistical
modeling functions

registration_block_cor, 43
registration_model, 44
registration_pseudobulk, 45
registration_stats_anova, 46
registration_stats_enrichment, 48
registration_stats_pairwise, 49
registration_wrapper, 50

add10xVisiumAnalysis, 4, 41, 43
add_images, 5, 38
add_key, 6
add_qc_metrics, 7
annotate_registered_clusters, 9, 35, 36
annotate_registered_clusters(), 36

BiocFileCache-class, 17
BiocFileCache::bfcrpath(), 16

check_modeling_results, 10, 11–13
check_sce, 10, 11, 12, 13
check_sce_layer, 10, 11, 12, 13
check_spe, 10–12, 13

80

INDEX 81

cluster_export, 14, 15
cluster_import, 14, 15
ComplexHeatmap::Heatmap(), 22, 36

DataFrame-class, 60

enough_ram, 16
ExperimentHub-class, 17

fetch_data, 16
fetch_data(), 5, 10–15, 19, 20, 28–31, 34,

38, 53, 57–60, 63, 66, 68, 72, 74, 76,
78

frame_limits, 18, 64, 67, 75, 78

gene_set_enrichment, 19, 23
gene_set_enrichment(), 21, 22
gene_set_enrichment_plot, 21, 21
geom_spatial, 25
geom_spatial(), 63, 66, 68, 72, 74, 76
get_colors, 26
ggplot2, 64, 66, 69, 72, 75, 77, 78
ggplot2::layer(), 25
ggplotly(), 63, 66, 68, 72, 74, 76

Heatmap-class, 23, 36

img_edit, 27, 29, 30
img_update, 28, 29, 30
img_update_all, 28, 29, 30

layer_boxplot, 31, 59, 60
layer_boxplot(), 58, 59
layer_stat_cor, 9, 33, 36
layer_stat_cor(), 9, 35, 36, 62
layer_stat_cor_plot, 9, 35, 35
layer_stat_cor_plot(), 62
libd_layer_colors, 38
locate_images, 5, 38

magick::enhance, 28
magick::equalize, 28
magick::image_background, 28
magick::image_channel, 28
magick::image_contrast, 28
magick::image_median, 28
magick::image_modulate, 28
magick::image_quantize, 28
magick::image_read, 28
magick::image_transparent, 28
magick::negate, 28
magick::normalize, 28
multi_gene_pca, 39, 40
multi_gene_sparsity, 39, 39, 40

multi_gene_z_score, 39, 40, 40

paste(), 78
paste0(), 64, 69, 74, 77
pdf, 74, 76
plot_grid, 74, 76
prep_stitched_data, 40

read10xVisiumAnalysis, 4, 41, 43
read10xVisiumWrapper, 4, 41, 42
read10xVisiumWrapper(), 5, 13–15, 19,

28–30, 38, 63, 66, 68, 72, 74, 76, 78
registration_block_cor, 43, 44, 46, 47, 49,

50, 52
registration_model, 44, 44, 46, 47, 49, 50,

52
registration_pseudobulk, 44, 45, 47, 49,

50, 52
registration_stats_anova, 44, 46, 46, 49,

50, 52
registration_stats_enrichment, 44, 46,

47, 48, 50, 52
registration_stats_pairwise, 44, 46, 47,

49, 49, 52
registration_wrapper, 44, 46, 47, 49, 50, 50
run_app, 52

sce_to_spe, 57
scuttle::isOutlier, 7
shiny.appobj, 54
sig_genes_extract, 32, 58, 60
sig_genes_extract(), 59
sig_genes_extract_all, 32, 59, 59
sig_genes_extract_all(), 31, 53, 58
SingleCellExperiment, 11, 12, 17, 31, 53,

57, 59, 60
SingleCellExperiment-class, 45, 46, 51,

57
sort_clusters, 61
sort_clusters(), 74
SpatialExperiment, 7, 43
SpatialExperiment-class, 4–7, 11, 13–15,

17, 19, 28–30, 38, 53, 54, 57, 58, 63,
64, 66, 68, 69, 72, 74, 76–78

SpatialExperiment::imgData, 57
SpatialExperiment::read10xVisium(), 41,

42
spatialLIBD (spatialLIBD-package), 3
spatialLIBD-package, 3
stats::fisher.test(), 20

tstats_Human_DLPFC_snRNAseq_Nguyen_topLayer,
62

82 INDEX

unname(), 26

viridis, 68, 72, 76
vis_clus, 19, 63, 67, 75, 78
vis_clus(), 65, 67, 75, 78
vis_clus_p, 19, 64, 65, 75, 78
vis_clus_p(), 25, 64, 71, 78
vis_gene, 67, 73, 77
vis_gene(), 63, 71, 77, 78
vis_gene_p, 69, 71, 77
vis_gene_p(), 25, 65, 69
vis_grid_clus, 19, 64, 67, 73, 78
vis_grid_clus(), 75
vis_grid_gene, 69, 73, 75
vis_grid_gene(), 73
vis_image, 19, 64, 67, 75, 78

	spatialLIBD-package
	add10xVisiumAnalysis
	add_images
	add_key
	add_qc_metrics
	annotate_registered_clusters
	check_modeling_results
	check_sce
	check_sce_layer
	check_spe
	cluster_export
	cluster_import
	enough_ram
	fetch_data
	frame_limits
	gene_set_enrichment
	gene_set_enrichment_plot
	geom_spatial
	get_colors
	img_edit
	img_update
	img_update_all
	layer_boxplot
	layer_stat_cor
	layer_stat_cor_plot
	libd_layer_colors
	locate_images
	multi_gene_pca
	multi_gene_sparsity
	multi_gene_z_score
	prep_stitched_data
	read10xVisiumAnalysis
	read10xVisiumWrapper
	registration_block_cor
	registration_model
	registration_pseudobulk
	registration_stats_anova
	registration_stats_enrichment
	registration_stats_pairwise
	registration_wrapper
	run_app
	sce_to_spe
	sig_genes_extract
	sig_genes_extract_all
	sort_clusters
	tstats_Human_DLPFC_snRNAseq_Nguyen_topLayer
	vis_clus
	vis_clus_p
	vis_gene
	vis_gene_p
	vis_grid_clus
	vis_grid_gene
	vis_image
	Index

